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A simple version of the H-F-B pairing calculation, in which the H~F-B average
single particle field is approximated by the phenomenological potential with parameters
depending on the energy gap, is discussed. It is shown that the corrections to the standard
pairing calculation those obtained are approximately included in the YCP method, proposed
by the authors earlier. These corrections are important when the energy gain due to the
pairing correlations is calculated. It is also concluded that VCP approximately takes into
account the particle number projection effects.

1. Introduction

The pairing correlation effect on nuclear properties is usually obtained from an ap-
proximate diagonalization of the constant matrix element pairing force and the single
particle (s.p.) Hamiltonian, containing a phenomenological potential and kinetic energy
operator. Most of the effort to improve the description of the pairing correlation effect
has been directed to improving the method of approximate diagonalization of such a Hamil-
tonian. A somewhat different approach to the problem of finding a simple description of
the pairing correlation was developed by the authors of the present paper in [1-5]. Within
the framework of this approach, which from now on will be referred to as VCP (volume
conserving pairing), an attempt was made to improve the properties of the Hamiltonian
itself by imposing some conditions, in particular the volume conservation condition. The
VCP calculations have shown that pairing can be quite well accounted for without intro-
ducing any new phenomenological parameters apart from those of the s. p. potential.

* On leave from the Institute of Nuclear Physics, Cracow.
** Address: Instytut Fizyki Jadrowej, Radzikowskiego 152, 31-342 Krakéw, Poland.

(649)



650

However, the arguments on the basis of which the additional VCP conditions were intro-
duced met with some criticism. A more general foundation of the method is, thercfore,
needed in order to sce what kind of improvement is introduced by VCP in comparison to
the standard pairing calculation.

It is the purpose of this paper to show that VCP is an approximation of the full
H—F—B method. It approximates the H—~F —B calculation under the assumption, that
the phenomenological potential reproduces well the shape of the H—F —B average s. p.
field and that the state-independent energy gap 4 can be used. In comparison with the
usual pairing calculation, VCP includes corrections arising from the fact that the phenom-
enological potential with constant parameters cannot approximate the H—F — B average
s. p. field for finite changes of 4.

The way in which the conditions connecting the parameters of the phenomenological
Hamiltonian can be obtained within the H—F—B method is discussed in the second
Section. The third one deals with the problem of practical use of the conditions thus
obtained. In the last Section some questions concerning the particle number projection
are discussed.

2. Relation between the s. p. and pairing parameters

1. In practical pairing calculations the Hartree-Fock part of the more general H—~F—B
problem is assumed to be solved. The H—F —B average s. p. field can be written as

va’ = z <V, H{Vivls u>ﬁp! (1)
u

where V' is the antisymmetrized two-body force, and 7, are the generalized occupation
numbers, equal to the squares of the pairing amplitudes: 7, = v2. The change of U caused
the variation of # is

().U\'v’ = z <V, [l!VIV,, /l>5ﬁu' (2)
u

The H—F self-consistency of U means, in particular, that the change of the s. p. states v
introduced by U will give no linear contribution to the energy change at the H—F—B
energy minimum. At the H—F—B minimum U can, therefore, be approximated by an #
independent phenomenological potential U®. With the potential U° the BCS equations
can be written and solved for 4 and the chemical potential 2 in the usual way. The change
of the s. p. energy is given in such a calculation by the familiar formula

5Es.p. = 6{2 Esﬁv}a

where ¢ are the s. p. energies calculated with the potential U°. It is easy to see that the
contribution of 6U to the energy change is automatically included here. From (1) and (2)
we have

Y oU,i, = X U,,07, ©)
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and the s. p. contribution to the encrgy change takes the form
o = 2 D00, +8(1 Y U i) =~ Y (T, +U,)0A, ~ &3 €)A,), 4)

where T is the kinetic energy operator. Thus, by choosing a right shape of the potential
U° and connecting its parameters a; to the experimental quantities one can hope to ap-
proach the self-consistent solution for 4, 2 and associated quantities at the H—F—B
minimum,.

The situation is different when the energy change for finite differences of # (or 4) is
to be calculated. This is, in particular, the case when the energy gain due to the pairing
correlation B, = E(4 = 0)— E(4) is the required quantity. It follows from (1) that E(4 = 0)
and E(A) should be calculated with different s. p. potentials. The error introduced by calcu-
lating them with the same phenomenological potential U° cannot be eliminated by a better
choice of its shape or parameters.

Another source of an even more serious error is due to the fact that the phenomeno-
logical potentials used in practical calculation can hardly pretend to reproduce the H—F
self-consistency at the H—F — B minimum. When the energy change calculated by means
of them is extrapolated to 4 = 0, the use of (3) or (4) means that the entire potential
change dU is included, also that part of it, which would be compensated for by a kinetic
energy change in the self-consistent calculation.

2. An obvious generalization of the standard BCS procedure, which would be free
from the inaccuracies mentioned above, consists in approximating U with the phenom-
enological potential U°, the parameters a; of which change with 7. The dependence of
a; on 7 should be consistent with the expressions (1) and (2). In order to solve the H—F—B
problem simplified in this way, the energy minimum with respect to the pairing amplitude
variations and the variations of the s. p. states v, caused by the change of U° with 4, should
be found.

The relations between the parameters of U°, implied by expression (1), can be ob-
tained from (3) by writing U as

sU ouy, 55
= ~ a‘-.
vy : 60"

Equation (3) then takes the form

0
N I
pul—)

It follows from (1) and (2) that if U° splits into parts which come from different components
of the two-body force, relation (5) can be written separately for each part and its param-
eters.

It is interesting to examine the case of the harmonic oscillator potential, in which
relation (5) determines the 7i-dependence of the single parameter, i. e. the oscillator strength
. (The dependence should be the same for the widely used Nilsson potential, since the
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spin orbit force can be connected with diflerent component of the two-body interaction.)
We have U, = 1hwr?, where r2, = N,+3, N, being the oscillator quantum number of

the s. p. state v, and (5) can be written as

T e
Y 4 rddoi, = Y 1 hord oA,

v v
or
S 3 Dges
— = LR
0] {r“JBes

where (2>pcs = 3. ri i, Integrating this equation we get
¥

{r*ypes/o = const.

or
2 o,
{Fopes = - (' ppes = const. (6)
me

which tells us that the mean square radius of the nucleus should not be influenced by the
pairing correlation. Condition (6) is just the condition which has been used in the VCP
method.

3. It is easy to see the effect that relation (6) may have on the pairing energy gain B,,.
With the A-independent h. o. potential we would have the s. p. contribution

5Es.p. = wO{Z ;yz'vnv— Z ;3v203} = *w05<;2>3
v v>0

where §{r*) is the difference of the mean square of the dimensionless radius for 4 # 0
and 4 = 0 states. With the A-dependent h. o. potential U° the s. p. energy expression
must be written with the factor 3/4, ensuring that the potential energy is counted once:

Es.p. = wé% Z ;3v20\2' = Wy % {<;2>A=0+5<;2>}' (7)
v>0
From (6) we have
Wy <;2>A 5<;2>
_— = e = _1_ o 8
00 Tama  Pama ®
and thus
- 5\ N
E, =wo34|1+ = (Krda=0+0r D)y = Eqoo+35 0o0r"). )
{F>4=0

The kinetic energy correction included by using the A-dependent potential U° can, therefore,
be as large as 1/2 of the s. p. contribution to the pairing energy gain, and it can signif-
icantly reduce B,. This can be important in the equilibrium deformation calculation, and
can be of primary importance in the Coriolis-antipairing calculation, where B, essentially
determines the value of the spin, at which the transition to the 4 = 0 phase takes place.
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1t has been shown recently {6, 7] that in the usual BCS calculation the particle number
projection, which enlarges B, wipes out or pushes to high spins the point of the phase
transition. It follows from (9) that in the standard BCS one actually works with too large
values of B,. Thus, the conclusion of [6, 7] that the Coriolis-antipairing effect cannot be
the basic mechanism responsible for the anomalies in the rotational spectra are not really
demonstrated in this situation.

3. Puairing calculation with the A-dependent h. o. potential

At the value of w corresponding to the H—F—B minimum, o = w,,, the pairing
contribution to the energy expression can be calculated in the same way as for the 4-inde-
pendent potential and has, therefore, the familiar form:

Epair. = '_U)ch 2 u,v,, (]0)

v>0

where 4 is connected with the ratio of the pairing force strength G to w by the BCS equa-
tion

A= — U, (D
Weq L
v>0

In order to get the value of w., we have to find the point, at which the energy of the
system, equal to the sum of the s. p. contribution (7) and the pairing contribution (10),

E=ol} ¥ n2w-4 3% uy) (12)

v>0 v>0

is stable against variations of w:
dE  dE d4
do  d4 do

d4 . .. N .
For 7«;& 0 (it is always different from zero for the pairing acting in a sufficiently large
do

s. p., h. o. space) we get
dE
A
dA
Thus, the value of 4 (in w units) corresponding to the stability point can be obtained by

finding the minimum of the energy E with respect to 4. The dependence of w on 4 is given
by (6) or (8). These relations also couple the equilibrium values ., and 4.,

Weq = O(4ey)-

The procedure described above has been used in the VCP method. It should be pointed
out that once the pairing contribution at the stability point is written as in form (10),
no use is made of G and the BCS Eq. (11) for finding the 4., value. Relation (6) couples
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the s. p. and pairing parameters. They can be determined at the equilibrium point from
the values of the same experimental quantities (the mean square radius of the nucleus in
our case). Once w,, and 4., are determined, Eq. (11) may be used to calculate G.

It should also be stressed that in order to use condition (6), the pairing calculation
should be performed in a sufficiently large s. p. space. In one oscillator shell condition (6)
is an identity and loses its physical meaning. This corresponds to the fact that with the
h. o. degeneracies, the pairing force acting in one oscillator shell has no influence on the
structure of the wave function. The pairing amplitudes are fixed in the degenerated case
by the conservation of the average particle number and do not depend on G.

In the VCP calculation the term — G Y. v} has been added to the energy expression (12).

This is consistent with the present derivation of the method since this r-independent term
may be considered as an A-dependent correction to the constant term of the s. p. poten-
tial, which is not explicitly used in the calculation.

4. The particle number projection effect

The pairing calculation is often improved by projecting the right particle number
component out of the BCS wave-function and only then performing the variation with
respect to 4 (see, e. g., Refs [6, 7]). From the point of view of the BCS energy calculation
the effect of the particle number projection amounts to a multiplication of G and the s. p.
operator in the varied energy expression by the A-dependent factors. The factors are
equal to the ratios of the projected and unprojected average values of the pairing force
and the s. p. part of the Hamiltonian, respectively.

The main projection effect comes in the standard calculation from the multiplication
of G by the A-dependent factor. It can be accounted for by a redefinition of 4 in Eq. (11),
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Fig. 1. The VCP E(d)-curve for 1**Dy (full curve) is compared with the curves obtained in [7] by the
BCS calculation with (PBCS) and without particle number projection (dashed and dash-dotted curves,
respectively)
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corresponding to calculating it with the 4-dependent G [8]. The projection does not in-
fluence then the form of (10) of the pairing contribution used in our method.

The particle number projection effect could, therefore, influence the VCP results only
through the 4-dependent factor multiplying the s. p. part of the Hamiltonian. Here, how-
ever, it can be included in the w dependence on 4 and condition (6) determines then the
total A-dependence of , together with that part of it introduced by the projection. The
VCP method “feels”, therefore, the particle number projection only through the values
of its parameters, and the projection is effectively accounted for when the parameters are
determined from the experimental values of physical quantities.

In order to illustrate this conclusion, an example of the VCP E(4) curve is compared
in Fig. 1 with the curves calculated by the usual BCS method and by the BCS with the
particle number projection before the variation (PBCS). The Nilsson s. p. potential with
wo = 41JAY3 MeV was used in all three cases. In VCP only the paramcters of the Nilsson
potential were required. The equilibrium deformation was determined by minimizing the
energy expression with respect to quadrupole deformation. The details of the calculation
may be found in Ref. [S]. The BCS and PBCS curves were calculated in [7] at the experi-
mental equilibrium deformation and with G fitted to the experimental odd-even mass
differences. It should be noted that the inclusion of the corrections discussed in this paper
in the BCS and PBCS calculation would increase the minima in both cases.

The authors would like to thank Dr S. Frauvendorf for supplying the BCS and PBCS
curves for comparison with the result of VCP. They also thank Dr. I. N. Mikhailov for
helpful discussions of the subject considered here.
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