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The spin-isospin symmetry energy of nuclear matter, €4, is calculated within the frame
of the XK matrix theory, in an approximation in which the K matrix depends on a single
density. Results obtained for &4, with the Brueckner—-Gammel Thaler and the Reid soft
core potential, together with previous results for the isospin and spin symmetry energies,
£; and g4, are presented and discussed. The most reliable result is: &; = 53 MeV, ¢, = 65 MeV,
£,; = 76 MeV, in a reasonable agreement with that obtained with the “empirical” Landau
parameters.

1. Introduction

Nuclear matter is a four component system composed of N, neutrons with spin up,
N, neutrons with spin down, Z, protons with spin up, and Z, protons with spin down.
We shall call this system polarized nuclear matter. The term unpolarized nuclear matter
shall be used in the special case, when N, = N, = Z, = Z, = A/4. All the nucleons are
contained in a periodicity box of volume Q. The composition of the system may be charac-
terized by 4 = N,+ N,+Z,+Z,, by the ncutron (or isospin) excess parameter o, =
= (N,+N,~Z,-Z)/A, by the spin excess parameter «, = (N,+Z,—N,~Z/)/A, and by the
spin-isospin excess parameter o,, = (4;—A.)/4, where A, = N,+Z,, and A_= N +Z,.

The ground state energy of polarized nuclear matter, expanded in powers of the o’s,
has the form [1] (hereafter referred to as DH)

E/A = Svol—*—% (8t06,2+80(13+8“d:,), (11)

where powers higher than quadratic are neglected. Apart from the volume energy, &,
and the usual (isospin) symmetry energy denoted by ¢, we have in (1.1) the spin symmetry
energy &,, and the spin-isospin symmetry energy &,,.

The knowledge of ¢, ¢,, and ¢, is important in determining the effective nucleon-
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-nucleon interaction to be used in nuclear Hartrce-Fock calculations. Such an effcctive
interaction should be adjusted so as to give not only the right saturation density and binding
energy of nuclear matter, but it is important that it also leads to the right values of the
three symmetry energies. This point has been discussed recently in connection with the
Skyrme type interaction in [2, 3, 4].

Among the three symmetry cnergies, the isospin symmetry energy e, is most directly
related to experiment. Because of Coulomb forces, the medium and heavy nuclei have
in their ground state an appreciable neutron excess, and thus by analysing binding energies
of stable nuclei, we may get a reliable empirical estimate of e,.

The spin and spin-isospin symmetry energies are not related directly to the properties of
nuclear ground states (all even-even nuclci have zero spin in their ground state). One possibil-
ity of a semi-empirical estimate of &, and ¢,, (and also ¢,) is connected with the fact that
¢, and &,,, similarly as ¢,, may be related to the properties of certain collective excited
states (giant resonances). Within a speeific model of these excitations (generalized Gold-
haber-Teller model), we may obtain a rough estimate of ¢, and &, from the measured
excitation energies [1]. Another possibility of estimating ¢, and #,, is rendered by a rela-
tion between ¢, and ¢,,, and the spin dependent part of the optical model potential U,
[5, 6]. However, the magnitude of Uy has not been determined experimentally with any
reasonable accuracy so far.

In this situation, it is important to calculate ¢, and ¢,, with realistic nuclear forces.
It seems that such calculated values of ¢, and ¢,, are at the moment the most reliable
ones to which any effective nucleon-nucleon interaction should be adjusted. Such a calcula-
tion with the Brueckner-Gammel-Thaler (BGT) [7] and the Reid soft core (RSC) [8]
potential has been presented in DH.

To calculate any of the symmetry energies, one should consider nuclear matter com-
posed of two components, e. g., of nucleons with spin up and down in the case of ¢,. With
the help of an approximation (single density approximation) applied previously in calcu-
lating ¢, in [9), the values of ¢, and ¢,, have been deduced in DH from the properties of
unpolarized nuclear matter. Whereas this single density approximation of DH for calcu-
lating &, is a simple modification of the analogous approximation of [9], the case of &,
is slightly more involved. In fact, the way in which the single density approximation was
applied in DH for calculating ¢.. has not been complctely correct and should be im-
proved. It is the purpose of the present paper to clarify and improve the single density
approximation for calculating ¢,,, and to see the effect of this improvement on the result-
ing value of ¢,,.

In Section 2, we dcrive the correct expression for ¢, in the single density approxi-
mation. The expression contains the effective interaction in unpolarized nuclear matter X,
and its derivatives with respect to the Fermi momentum.

In Section 3, we present the results obtained for g,, with K calculated within the
Brueckner theory with the BGT and RSC nucleon-nucleon forces. Results obtained
previously for ¢, and g, are also presented. The agreement with results obtained with
“empirical” Landau paramnters is pointed out. The magnitude of the spin-spin part of
the optical model potential U is also discussed.
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2. Single density approximation for €.

To calculate ¢,,, we may put o, = o, = 0, and we have a two component system
with N, =2Z,=A4./2, and N, = Z, = A_/2. The two corresponding densities, 9., 0-,
and the two corresponding Fermi momenta, x, A (in units of h) are

K =3n%0, = ki(l+a,),
A% =3n%. = ki(l-a,), 2.D
where kg is the Fermi momentum for o,, = 0,
k=3, (22)

where ¢ = p.+o0.. = A/Q.
The contribution of the kinetic energy to &,., exr, is well known
tor = % &, 2.3)
where ¢; is the Fermi energy, e = h2kE2M.
To calculate the contribution of the potential energy to &,,, ebe', we have to calculate
the potential part of the energy of our system, Epgr, from which we then obtain

8:?1- = (0 Z(EPOT/ A)/ aair)O 249

where the subscript “0” indicates the value of the derivative at the point a,, = 0.

To calculate Epgy, We apply the Brueckner theory. However, in our derivation of
the expression for g,, we only assume that Epgr may be obtained from an effective
two-body interaction in nuclear matter, the K matrix. The particular way, in which K
is determined from nuclear forces, is irrelevant for our derivation.

We start with the expression

Epor = $[2 ;k V(k,Tn)+2 ;A V(ky|nyl, (2.35)
where, e.g., V(k;Tn) is the single nucleon potential of a spin up neutron with momentum k,

{in units of h), and where the superscript x(4) means that the sum is restricted to k, < r(4).
Notice that

Vik, 1) = Vk, Lp), Viki|ln)=Vik 1p), (2:6)

where, e.g., V(k | p) is the single particle potential of a spin down proton. Relations (2.6)
have been used in writing cxpression (2.5), and give rise to the factors 2.
For the single particle potentials, we have

VikTn) = kZ" {(k Ik, TnlK(x) [k(Tnk,Tn)
+(k, Tnk, | piK(x) [k Tnk,|p)—exch}

+ ;l {(k1T“k2ln|K(];F) ilenkzln)+(k1Tnk2TPlK(EF) ik1Tnk2TP)'—eXCh},
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V(kyin) = kZ” {(kllllszuiK(];F) {kyink,1n)

+(ky{nk,|p|K(ke) |k1nk,|p)—exch}
+ kZA {(kynk,|n|K(2) [k |nk,|n)+(k|nk,Tp|K(7) [k nk,Tp)—exch}.  (2.7)

In nuclear matter with «,, # 0, i.e., with x % A, the effective nucleon-nucleon inter-
action depends on two Fermi momenta, K = K(x, A). Consequently, in Egs (2.7), we
should have everywhere K{(x, ). Instead, we have replaced the reaction matrices K(k, )
by K matrices which depend on single Fermi momenta (i.e., on corresponding single
densities): «, 4, and

Fe = VR +22)2. (2.8)

This replacement constitutes the single density approximation, and Eqs (2.7), (2.5) express
the potential energy of our system with «,, # 0 in this approximation.

The justification of the single density approximation goes as follows. If we have two

nucleons whose Fermi momenta are the same, the effective interaction between them is
determined predominantly by their common Fermi momentum, e.g.,

(ky T nk, | plK(x, A) k, T nk, | p) = (k, T nk; | piK(x)|k, T nk, | p), (2.9
where K(k) is the K matrix in unpolarized nuclear matter with the Fermi momentum «.
In second order perturbation treatment of K, where the whole density dependence of X
is due only to the Pauli principle, relation (2.9) is exact.

If we have two nucleons whose Fermi momenta are different, we expect that the

effective interaction between them may be approximated by an interaction which depends
on an average Fermi momentum kg, e.g.,

(ky 1 nk; 1 p|K(x, )|k, T nk, 1 p) = (ky T 0k, T p| K(kp)lky T 0k, Tp),  (2.10)
where K(kg) is the K matrix in unpolarized nuclear matter with the Fermi momentum k.

Approximation (2.10), although plausible, is less justified than approximation (2.9).
By inserting expressions (2.7) into Eq. (2.5), we get

Epor = 3 D" (k1 k;2K(11, 116043 Y Y K(s0, T; &) |k k,)
5o s T

+ VY (R iky 2K, 1 D+3 Y T KGO, T 2) [kyky)
s T

k; kz
+235 Y kikyi Y K(s0, 1; k) + Y K11, T k) |k k), 2.11)
kl kz 5 T
with the notation
(kiky|K(smy, T; 1)k ky) = (kkosm T K(k) |k kysmT) (2.12)

for the K matrix in the representation of the total spin and its third component s, m,,
and of the total isospin T of the two interacting nucleons. In obtaining Eq. (2.11), we
have used the fact that in unpolarized nuclear mattter K does not depend on the third
component of the total isospin, and on the sign of m,.
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When we calculate ef9T according to Eq. (2.4), we have to take into account two
ways in which Epoy, Eq. (2.11), depends on «,,: first, through the upper limits of the
sums over k, and k,, and second, through the intrinsic dependence of K on x, 4, and k.

For £9POT the part of e£27 which arises entirely from the first type of the dependence,
we get
0Vo(k
=2 [Frsarin 2] (.19
K k=kF
where

. A [dkg

and V,(k) is the single particle potential in unpolarized nuclear matter (see, ¢.g., {6]), and
where we use the notation K(sm,, T) = K(smy, T; kg).
For Aé,., the part of e'°T which arises from the second type of the dependence, we get

Z QT —1) [K(11, T)—3} K(10, T)—1 K(00, T)] kkF), (2.14)
T

Ae,, = Ape+ 4,8, (2.15)
where
Ao = —3 A1 Z z k] ke Z@T—f—l)ZK(sms, T) tk kz)
= —% Vorlke), (2.16)

where Vog(ky) is the rearrangement potential at the Fermi surface in unpolarized nuclear
matter (see, e. g., {6]), and where

Aleat = A1086t+A1b80r’ (217)
where

dk,
Aiabor = 3 J‘ E < k| ke [21((11,1)4-% E E K(s0, T)]
F
kg kg d
Aipepe = 2 A7 (klkz kg —[ K11, T)+ K(s0, 1)]
E , E ! dk; § , E ,
ky k2 T s
s [21{(11 )+3 E E K(s0, T)]

By adding all the contributions to ¢,,, we get

ka2> , (2.18)

k kz) (2.19)

Egr = By ey O+ de,, (2.20)
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When we compare expressions (2.18), (2.19) with expression (28) of DH for 4,¢,,,
we notice that the second part of (2.18), the term with YY" K, is missing in expression (28)
sT

of DH. This is the only difference between the present results and those of DH. The starting
point for the single density approximation in DH was the correct expression for 4,e,,
in terms of the K matrix depending on two Fermi momenta, Eq. (22) of DH. Into this
expression, approximations (24a) — (24d) of DH have been introduced. Among them,
approximation (24d) went beyond the. single density approximation. This, in turn, led to
the final expression for 4,¢,,, Eq. (28) of DH, without the term with the first derivative
of $Y % K. This shortcoming of DH is corrected in the present paper in which the single
sT

density approximation is introduced in a consequent way at the beginning of our deriva-
tion, in Eq. (2.7).

Because of the single density approximation, Eq. (2.9) and in particular Eq. (2.10),
our result for ¢, is approximate. To avoid this approximation, one would have to determine
an effective interaction, K(k, A), in a two component system with two Fermi momenta,
x and A. Analogous calculations have been performed in case of &, [10, 11, 12]. Such
involved calculations could also be performed in case of ¢, (and &,), where, however,
an additional complication arises because of the deformation of the two Fermi sphercs
in spin-isospin polarized nuclear matter [13]. The effect of this deformation on ¢,, (and ¢,)
has been estimated in [13] to be very small, and is negiected in the present paper.

3. Numerical results and discussion

In our numerical calculations, we use the BGT and RSC nucleon-nucleon potentials.
To determine the K matrix elements, needed for calculating £{27°7, we apply the Brueckner
theory. The calculation has been described and performed in DH. The value of 44¢ has
been determined by applying the Hugenholtz—Van Hove theorem [14]. In calculating
4,¢,, for the BGT potential, we have used the Fermi momentum dependence of the K
matrix determined in [15], and for the RSC potential, we have used the effective inter-
action G-O of Sprung and Banerjee [16]. Except for the term with the first derivative
of 33 K in Eq. (2.8), the calculation is identic with that described in DH and in [6].

sT

The calculated values of ¢,, at the equilibrium densities, determined for the BGT
potential in [7] and for the RSC potential in [17}, are given in Table I. Values of ¢, and ¢,,
calculated in DH, are also shown in Table I. The present way of calculating ¢,, (according
to Eq. (2.18), with the term %ZY K) leads to bigger values of ¢,, compared to the result

of DH, where we have obtamed g, = 76.9 MeV for the BGT potential and &.. = 73.0 MeV
for the RSC potential.

The results obtained with the more up to date RSC potential, and with the rearrange-
ment contributions Ade(x = 1, 0, 01) calculated with the carefully adjusted effective
interaction [16], are more reliable than those obtained with the old BGT potential. The
RSC values of &, have been calculated at the equilibrium density for the RSC potential
(kg = 143 fm~* [17]). To obtain the RSC values of ¢, at the empirical density (ky =
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= [.36 fm'), we have proceeded in the following way. The part containing S°%, Eq. (2.13),
has been obtained from its value calculated at A = 1.43 fm~! by assuming a linear depen-
dence in 0. The term 1 kg(CVo/0k), has been obtained from the values of the effective
mass as a function of kg, given in [17]. The rearrangement part Ae¢,, has been calculated
with the help of the eflective interaction [16] with kp = 1.36 fin-'. An analogous pro-

TABLE |
Results for ¢ and Uy (in MeV)
Potential BGT RSC
ke(fmY) 1.49% 1.43b
£ 64.1° 60.59
£o 64.94 74.14
Egr 92.5 86.6
Ukg) 126.1°¢ 120.8¢
Uy(kp) 128.7¢ 177.8¢
Ugilkp) 239.5 225.3
* Determined in [7]. P Determined in [17]. € Determined in 191, 9 Determined in [{]. € Deter-

mined in [5].

cedure has been applied to ¢, and ¢,. In this way, we obtain for kp = 1.36 fm~! the following
RSC results:

¢, = 53MeV., ¢, =65MeV, &, =76MeV, (3.1)

which we consider our best calculated values of the three symmetry cnergies. Notice that
we have ¢, < ¢, < &,,.

Our value of ¢, agrees reasonably with the liquid drop model estimate of Mayers
and Swiatecki [18]: ¢, = 56 MeV (however, by applying the droplet model, they get a rather
large value of ¢, = 73 MeV [19]).

As pointed out in § 1, an empirical estimate of ¢, and ¢,, is very hard. An indirect
estimate of ¢, and ¢, (and also of &) may be obtained with the help of the “empirical”
values of the Landau parameters, Fy = 0.7, Gy, = 1.15, Gy = 1.45, F; = —0.6, adjusted
in [20] (see also [3]) to low lying states of 2°*Pb. These values inserted into the Landau
theory expressions for ¢,

(1+Fy), x =1,

ey = 2ep(1+F )7 'x {(1+Gy), x=o0, (3.2)
(1+Gp), x = or,
lead for kx = 1.36 fm~* to the following values
g, = 54 MeV, &, =69MeV, ¢, =78MeV, 3.3)

which agree reasonably well with our best calculated values (3.1). The agreement could
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not have been achieved with the single density approximation applied for ¢,, in DH (the
RSC result for kg = 1.36 fm~! would then be ¢,, = 64 MeV). Also, no agreement could
be achieved, in particular for ¢, if we used in Eq. (3.2) Landau parameters calculated
from nuclear forces in {21] and [22] (see [23]).

Now, let us discuss the consequences of our present new value of &,, on the estimate
of the spin dependent part Uy of the single nucleon potential U. The single nucleon
potential U in nuclear matter is defined here, together with the kinetic energy, as the removal
energy (it differs from the single nucleon model potential ¥ by the rearrangement potential).
In polarized nuclear matter, the single particle potential of a nucleon (n or p) with momen-
tum k, and with spin up or down (} or }), has the form [5, 6]

U(kTy) = Uo(k)+4 [ Lo U (k) +o,U (k) o, U, (K)],
Ulklp) = Uo(k)+1 [£oUdk) =2, Us(k) F2,.Us(K)], (3.4

where only linear terms in «(x = o, 1, 1) are retained. Strictly speaking, U depends
on the direction of k, and U(kT(|);) in Eqs (3.4) denotes the value of U averaged over
the directions of k.

As has been shown in [5], and [6], one may calculate U (kg) from the relations

Gx = %BF"’% kF(an/ak)kF‘{‘}{ Ux(kF)’ X = T, 0', O'T, (3.5)

if one knows &,.

The results obtained for U,.(kg), together with values of U (kg) and U.(kg) obtained
befote, are shown in Table I. The new values of U,,(kp) are much bigger than the values
175 MeV and 171 MeV, respectively for the BGT and RSC potential, obtained in [5] from
the values of ¢, and ¢,, of DH. In particular, we have now U,, > U,, which is consistent
with the result obtained in [6] in the phase-shift approximation (see Fig. 2 of [6]). This,
in turn, affects the estimate of U,,.

In the valence nucleon model, in which the total spin I of the nucleus is equal to the
spin j of a valence nucleon, the single nucleon potential (3.4) in the elastic channel may
be written in the form [5]

U = Us+A (UtT + UgsoD), (3.6)
where

@ent for I =j =1+1%,
Us = (U, xU,) % 3.7
-2+ for I=j=1-%,

where the + sign applies to the case when the scattered and the valence nucleon are like
nucleons (both neutrons or both protons), and the — sign to the opposite case, and where /
is the orbital angular momentum of the valence nucleon, and s, is the spin of the scattered
nucleon (2, is its isospin, and T is the total isospin of the target nucleus).

By inserting into Eq. (3.7) our RSC values of U,(kg) and U, (kg) of Table I, we get
U, = —7MeV for the n— *°Co scattering (valence proton configuration (1f;;)71),
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U, = 58 MeV for the p — *°Co scattering, and U,, = 81 McV for the p — ?7Al scattering
(valence proton configuration (1ds,;)™"). Our present result for the n — 3°Co scattering,
the case of unlike scattered and valence nucleons, which is determined by the difference
U,~-U,, differs both in magnitude and sign from the result U, = 1 MeV of [5]. Our
present result agrees better with Satchler’s estimate, Uy, = —12 MeV [24]. As stated in
[5] and [6], the experimental estimates of U in the case of n —3°Co are not conclusive.
The dificrence between our present results and the results of [S] is less striking in cases
of p—*°Co, p— ?7Al, where U, is determincd by U, + U,, (like scattered and valence
nuclcons).

Both spin and spin-isospin dependent parts of the single particle potential contain
tensor parts, U, and U, besides the scalar parts, U, and U,,, discussed above. A partial
estimate of U, , given in [6] (Eq. {71) of [6]) would be modified within the present single-
-density approximation. We do not discuss here this modification, because it concerns only
a part of U,,, whereas the complete U,,, has not been estimated so far. Furthermore,
the maguitude of the tensor part of the spin-spin term in the optical model potential is
even harder to determine experimentally than the scalar part [25].
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