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REARRANGEMENT EFFECTS IN ASYMMETRIC NUCLEAR
MATTER

By P. HAENSEL*'**
Institute of Physics, University of Liége
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The rearrangement effects in asymmetric nuclear matter are investigated within the
framework of the lowest order Brueckner theory with the Reid soft core nucleon-nucleon
interaction. The accuracy of the single density approximation, which has been used previously
in several investigations of the properties of asymmetric nuclear matter, is studied in the
case of the symmetry energy and of the individual elements of the reaction matrix.

1. Introduction

In the theory of nuclear matter [1, 2] one considers usually the case of symmetric
nuclear matter with equal neutron and proton number densities, p, = ¢, = 3 0. The
microscopic calculations of the structure of medium and heavy nuclei involve in fact
asymmetric “nuclear matter”” and the neutron excess parameter « = (N —Z)/A reaches
the value « = 0.23 in the case of 238U. In the case of hypothetical superheavy nuclei the
neutron excess is expected to be even larger. Moreover, investigations of the properties
of the neutron star matter involve highly asymmetric nuclear matter with a large neutron
excess [3].

Up to now, the general case of asymmetric nuclear matter has been studied in only
a few complete nuclear matter calculations, performed within the framework of the
Iowest order Brueckner theory [4-7]. In the standard case of symmetric (x = 0) nuclear
matter one considers in fact a one component nucleon liquid, the exclusion principle
and dispersion effects being the same for neutrons and protons. In the general case of
asymmetric nuclear matter one must consider two components (neutrons and protons)
of nuclear matter explicitly. Thus, the properties of asymmetric nuclear matter should be
derived from the neutron-neutron, proton-proton and neutron-proton effective inter-
actions, approximated usually by the corresponding reaction matrices of the lowest order
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Brueckner theory. The reaction matrix in asymmetric nuclear matter is different from
that calculated in symmetric nuclear matter at the same total density ¢; the former is,
e.g., charge dependent [8], while the latter is charge independent The effects resulting
from the intrinsic dependence of the reaction matrix on the composition of nuclear matter
(in our case on «) are known as rearrangement effects [9].

The self-consistent calculation of the reaction matrix in the system with two different
Fermi momenta (k, and k,, for neutrons and protons, respectively) is very complicated.
Hence, in several papers the rearrangement effects were estimated using single density
approximation (SDA), in which one approximates the exact reaction matrix K, .-, (k,, k,)
(t,, 7. = n, p) by the K-matrix calculated in symmetric nuclear matter with suitable
defined Fermi momentum kr = k, = k, [9-14).

This approximation which in the case of the n—n and p—p pairs accounts exactly
for the exclusion principle rearrangement effects, was introduced by Brueckner and Gammel
in their paper on the properties of liquid 3He [I5]. It was subsequently generalized by
Brueckner and Dabrowski [9] to the case of asymmetric nuclear matter and by Dabrowski
and Haensel [11] to the case of polarized asymmetric nuclear matter (cf. [14]). In its original
version the SDA was applied to the calculation of the magnetic susceptibility of neutron
matter [16-18]. In a somewhat modified form the SDA was used by Ellis and Sprung
in their study of the binding energy of neutron star matter [19]. The possibility of the
application of the SDA in the calculations of the structure of heavy nuclei within the
framework of the local density approximation has been mentioned by Siemens [S] and
discussed by Sprung and Baneriee [10].

In the present paper the rearrangement effects in asymmetric nuclear matter are studied
within the framework of the lowest order Brueckner theory [1, 2]. In some recent calcula-
tions [20] a discrepancy between the variational (Jastrow-theoretic) and the Brueckner
theory results for nuclear matter has been found. The arguments leading to the possible
explanation of these discrepancies has been recently presented in Refs [21, 22].

The calculations of the present paper are performed at the density of nuclear matter

= 0.166 fm~3 and for o < 0.4. The reaction matrix is calculated self-consistently from
the Reid soft core nucleon-nucleon interaction [23]. In Section 2 we briefly present the
formalism used in the present paper. Section 3 contains general discussion of the rearrange-
ment effects in asymunetric nuclear matter. In Section 4 we present the numerical results
concerning the rearrangement effects in the symmetry energy and in the individual elements
of reaction matrices. In particular, we discuss the role of the self-consistency of the
single-particle spectra, and the accuracy of the SDA of Brueckner and Dgbrowski. The
short Section 5 contains the conclusions of the present paper.

2. Formalism

We apply the lowest order Brueckner theory of nuclear matter [1, 2], with added
complication of two different Fermi momenta,

ko = ke(1+2)"" 6))
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for neutrons, and

ky = ke(1—o)''? @
for protons, where

2k;
&= (Qn_gp)/{)ﬁ Q == *3-”-—2 .

The reaction matrices K, .., (1, 7. = n, p) satisfy the integral equations

(mMK . |mM) = (mijv, . jm)

ak , Qo GM+k, + M—k)
+ 3 m v:,t’zlk> 2 2y
J(2m) e, M+my+e. GM—m)— (3 M*+Kk")].4

kMK, imM>.

T2t'zi

3)
The notation of Ref. [7] will be used throughout this paper. By m, k(M) we denote the
relative (total) momenta of the nucleon pair, related to the individual momenta appearing
in {mymy|K, o \mym,> by mi = 3 M+m, my =3 M—m.

All momenta will be measured in units of # and .# is an average nucleon mass divided
by 712. We consider spin saturated nuclear matter. Thus, we may suppress spin indices
to simplify the notation: our X __.._ in the subsequent formulae are the spin traces of the
corresponding matrices in the spin space divided by four (spin averages). The O, .,
in Eq. (3) are the exclusion principle operators,

1 if k; >k, and Kk, >k,
Qt,t',(kla kz) = (4)

0 otherwise

The single-particle energies in the hole states (m, < k., m, < k) are calculated self-
-consistently,

2

er,(nll) + Vt,('nl)

2.4

Vt-(nll) = 4k Z fd}n2m2 deftzt ] (5)
F

-1

while in the intermediate states (k; > k., k, > k. ) the pure kinetic energies are used
[1, 2]. In Eq. (5) ¢ is the cosine of the angle between m; and m,. At fixed total density

¢ = 0,+0, the energy per nucleon in asymmetric nucleon matter will depend on the
neutron excess parameter, a,

2 keg

E() = g k" [(1+a)5’3+(1 0 P1+3 ks Y 5 dm,m?V, (m,). 6)

Tz
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Thus, the potential part of E depends on a in two ways: firstly, through the upper limits
of the integrals in Eqgs (5), (6), and secondly, through the intrinsic dependence of the
reaction matrix on «, resulting from the a-dependence of the exclusion principle operators
Q... and that of the starting energy e, (m,)+e, (m;), appearing in Eq. (3). This is
the latter dependence on o which will imply the rearrangement effects in the symmetry
energy of nuclear matter.

3. Rearrangement effects and the SDA

The rearrangement effects in asymmetric nuclear matter have two sources: the charge
and a-dependence of the exclusion principle operator and the charge and «-depencence
of the self-consistent starting energy e, (m,)+e. (m.,) in Eq. (3). In the standard approxi-
mation in which the exclusion principle operator is replaced by its angle-averaged value
(i.c., averaged over the directions of the total momentum of the nucleon pair) we have

0 if k< (kI-3MH'V?
Qe ® Qe (M, k) = {1 if k>3 M+k,, )
3 M*+k*—K2)/Mk  otherwise
in the case of the like nucleons pair, and
(0 if k< [3(k2+kDH—3M*]2
1 if k>3M+k,
Qup & Qup(M, k) =< %<1+ M4k — K2 ®

Mk ) for IM+k, <k<iM+k,

L[E M*+k* =3 (kI +k3)])/Mk  otherwise
in the case of the n-p pair.

In the SDA [9], one approximates the exact, self-consistent reaction matrix K, .. (k,, k,)
by that calculated in symmetric nuclear matter with a suitably defined value of

k, = k, = kg. In this way one avoids complicated self-consistent calculation with two
different Fermi momenta. In the case of the like nucleons pair the SDA has the form

K. ko k) = K., (ke ke ) ®

In this case approximate K-matrix is calculated from Eq. (3) with exact exclusion principle
operator, but with a hole spectrum of symmetric nuclear matter of the density ¢ = 2g,_.
Let us mention that in the second order (in v) perturbation treatment of K, where the
whole a-dependence of K is due only to the exclusion principle, relation (9) becomes
exact (cf. [24]).

In the case of the unlike nucleons pair one approximates the seif-consistent reaction

matrix K, (k,, k,) by that calculated in symmetric nuclear matter with suitably defined
“average” Fermi momentum o,

Koo(kas k) = Kpp(@, ). (10)
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In the original version of the SDA [9] the definition w = [ (k,z,-f-kf,)]“'2 has been used.
In the case of the n—p pair even the exclusion principle effects are not treated exactly
in the SDA, but the definition of w as introduced in [9] may appear to be plausible in
view of the form of Q,p, Eq, (8). Let us mention, that the possibility of different definitions
of w, of the form w = [(k,’:'+k§)/2]1/ ¥ with N = 1, 3, has been considered by Sprung
and Banerjee [10].

4. Numerical results and discussion

The calculations have been performed at the density of nuclear matter ¢ = 0.166 fm—3
(corresponding to the average Fermi momentum ¢ = 1.35fm™!) and for a = 0, 0.2, 0.3
and 0.4. The Reid soft core potential [23] has been used as input nucleon-nucleon inter-
action. The reaction matrix has been calculated using angle-averaged exclusion principle
operators, Eqs (7), (8) and effective mass approximations for the hole spectra. In the case
of a # 0 the self-consistent reaction matrix K, has been calculated with the energy denom-
inator of Eq. (3) averaged over the directions of the total momentam of the n—p pair [7]
(cf., [6]). In contrast to all previous calculations [4-6] we have not used the average total
momentum approximation [2]. A detailed description of our calculational procedure
may be found in Ref.[7].

The energy per nucleon in asymmetric nuclear matter was calculated in four cases,
which are described below:

A. Complete self-consistent calculation at each «;

B. The exclusion principle is treated correctly but single-particle spectra for symmetric
(o = 0) nuclear matter are used;

C. The calculation is performed using the reaction matrix of symmetric nuclear
matter;

D. The calculation is performed using the reaction matrices calculated in the SDA.

The corresponding values of the symmetry energy, &, has been obtained from the
calculated values of E(a) using the least-squares fit of the usual form

E(e) — E(0) = g,0(1+ Aa?). 1y

The least-squares fits, Eq. (11), lead to the values of the symmetry energy, &, and of the
dimensionless parameter, A, which are given in Table I. Our values of & and A, column A
of Table I, should be compared with those obtained by Sjoberg [6] for the same density
of nuclear matter. The least-squares fit to Sjoberg’s values of E(x) -E(0) for a < 0.6
yields ¢, = 23.6 MeV and 1 = 0.08, which agree quite well with our results (see Ref. [7]
for the discussion of the related problems).

The rearrangement contributions to the symmetry energy seem to be small (cf., [4, 6, 9]).
The SDA leads to an overestimate of these contributions.

One may note quite a good agreement between the SDA value of ¢, and that calculated
with exact treatment of the exclusion principle but with single particle spectra from sym-
metric nuclear matter, column B.
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TABLE 1
Calculated values of the symmetry energy, ¢ (in MeV) and of the dimensionless parameter 2
A B C D
e 23.1 24.3 ‘ 22.7 24.5
2 0.13 0.30 1 0.35 0.25

Column A: exact self-consistent calculation. Column B: exact treatment of exclusion principle but
hole spectrum from symmetric nuclear matter. Column C: calculated using the K matrix of symmetric
nuclear matter. Column D: calculated in the SDA with o = [(k3+kZ)/2]*/2.

The direct calculation of g from Eg. (11) gives
& = 3 [0°E(2)/02 ], (12)
and the rearrangement contribution to g, Sy, may be shown to be of the form [9]
Sg = —% Vor(kg)+ Spy, (13)

where Vogplky) is the rearrangement potential at the top of the Fermi sea in symmetric
nuclear matter. The first term in Eq. (13), Sgo = —3 Vor(kg), Is negative and may be
calculated from the density dependence of the reaction matrix in symmetric nuclear
matter [11]. At kg = 1.35fm™! we obtain Sgo ® —3.2 MeV. The second term in Eq. (13)
contains the derivatives of the reaction matrix in asymmetric nuclear matter with respect
to o and has been usually calculated using the SDA [9-13]. Our results (Table I, columns C
and D) yield, together with our estimate of Sgo, the SDA value S3* ~ 5 MeV, while
exact calculation yield Sy, ~ 3.6 MeV. Thus, the SDA, Eqgs (9), (10), overestimates Sy
(and SR) by 1.4 MeV.

The calculation performed using the prescription w = (k,+k,)/2 would yield smaller
value of Sg;. This follows from the inequality (k,+k,)/2 < [(k,z,+k§)/2]1/2; the reaction
matrix X ,, is more attractive when calculated with arithmetic mean of k, and k,,
leading to slightly stronger binding of asymmetric nuclear matter. On the contrary, the
choice w = [(k)+k3)/2]"'* = kg would increase the value of Sg,, leading to the stronger
overestimating of the rearrangement contribution to & (cf., Ref. [10]). Let us note, that
even at o = 0.4 the differences between the values of w = [(kh +k5)/2]"/" calculated
for N = 1,2 and 3 are quite small. At kp = 1.35fm™! we obtain w = 1.324 fm~*,
1.337 fm! and 1.350 fm~! for N = 1, 2 and 3, respectively, while k, = 1.510 fm~?, and
k, = 1.139 fm~*. This relative sensibility to the choice of w in Eq. (10) for A’ ap 18 due to
the presence of the 3S, —®D, channel in the n—p interaction.

Let us discuss now the rearrangement effects in the individual elements of the reaction
matrix. In Table IT we give the values of 2" __,._ for chosen values of momentum variables
m and M. The results for ", and X ,, may be easily understood using qualitative con-
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TABLE I
The values of # 7., (in MeV fm®) at kg = 1.35fm™ and for m = 0.7 kg, M = 0.3 kg
a =04
=0 I
A B 1 D
X an —207.1 —206.6 —203.5 -195.9
Hop -207.1 -210.4 —2133 —226.7
A up —339.1 —~337.6 —333.0 —~343.7

For the explanation see the caption to Table L

siderations. In our calculations we approximate the single-particle potentials by the
effective mass expressions,

) m? /1
Vlmy) = —d+ 5~ ( - —1)~ (14)
In asymmetric nuclear matter with « > 0 we have 4, < 4° < 4, where 4° is the depth
of the hole spectrum in symmetric nuclear matter. On the other hand, k, > k, and thus
the exclusion principle tends to make 5", more attractive then ", (cf., p. 133 of Ref. [1]).
The results presented in Table IT show, that the large part of this exclusion principle
effect is suppressed by the dispersion effects, stemming from the large difference between 4,
and 4,: at « = 0.4 we have 4,—4, = 26 MeV. The self-consistency tends to make 4,
more attractive than % ",,. When applying at such a high « the SDA, we grossly violate
the self-consistency. In fact, using the prescription of the SDA we obtain 434 — 44 =
= —37 MeV. Thus, in the SDA the dispersion effects act in the same direction as those
stemming from the exclusion principle: they make X ,, more attractive, making at the
same time J,, less attractive (as compared with symmetric nuclear matter).

The qualitative discussion of the %", case is more difficult. One may note, that self-
-consistency corrections to the starting energy are here of the order ~ o2 (and not ~a,
as in the case of the like nucleons pair). However, in the case of the n—p pair the presence
of the S, —3D, channel makes the reaction matrix more sensitive to the exclusion principle
and dispersion corrections. Consequently, the SDA results for 2, are quite sensitive
to the definition of w, appearing in Eq. (10).

The SDA seems to give better results for the symmetry energy of nuclear matter
than for the individual elements of the reaction matrix in asymmetric nuclear matter,
The summations and integrations in Egs (5), (6) imply, quite fortunately, the cancellation
of the large part of the incorrect dispersion effects of the SDA.

5. Conclusions

The lowest order Brueckner theory calculations show, in agreement with previous
estimates, that the rearrangement contribution to the symmetry energy is small. The SDA,
used in the previous studies of the properties of asymmetric nuclear matter, overestimates
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the rearrangement contribution to the symmetry energy!. The rearrangement effects,
resulting from the exclusion principle, are partly cancelled by those resulting from the
self-consistency of the hole spectra. The calculation of the reaction matrix in asymmetric
nuclear matter shows, that the SDA may give a rather poor representation of the effective
nucleon-nucleon interaction in asymmetric nuclear matter with a large neuntron excess
(e.g., @ = 0.4). The incorrect treatment of the dispersion effects by the SDA leads to
quite a large overestimate of the rearrangement effects in the n—n and p—p reaction
matrices in such a highly asymmetric nuclear matter.

The author expresses his gratitude to Professor C. Mahaux from the Institute of
Physics of the University of Liége for critical reading of the manuscript.
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