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We present a general discussion of many-body densities in nuclei, including two-body
and one-body densities. The short-range part of the two-body density is calculated in the
independent-pair approximation for nuclear matter, and we study effects of Pauli correlations,
correlations induced by a hard-core, and correlations coming from the Moszkowski-Scott
interaction. These model correlation functions are used as a basis for a comparison of two
classes of measurements of the two-body density where one has relatively well-known
probes: inelastic sum rules (electron and nucleon) and elastic proton-nucleus scattering
at high energies. We carry out calculations for *2C and '°0O and emphasize that the low-
-momentum-transfer part of the sum rules depends critically on the finite extent of the
nucleus and the low-lying collective modes. The most promising of these tools for measuring
short-range correlations appears to be high-momentum transfer inelastic nucleon sum
rules, although there are problems associated with the mesonic degrees of freedom in the
nucleus. Other possibilities for measuring two-body densities are discussed very briefly.

1. Introduction

The problem of calculating and measuring the density distribution of nucleons in
the nucleus is important and fundamental to nuclear physics. One-body densities are
directly calculated, for example, in an independent-particle Hartree-Fock basis and are
directly measured by elastic electron scattering. The problem of getting at two-body
densities, or two-body correlation functions, is much more vexing in nuclei.! While the
two-body density is an essential ingredient in all calculations of nuclear energies, the
two-body density in nuclei has never been unambigously measured.

The purpose of this paper is to present a general discussion of many-body densities
in nuclei, including two-body and one-body densities. We first define these densities and

* Research sponsored in part by National Science Foundation grant PHY 75-18444.
** Swiss National Science Foundation Fellow. Present address: Institute of Theoretical Physics,
University of Bassel, Switzerland.
*** Address: Department of Physics, Stanford University, Stanford, California 94305, USA.
! For a good review of this topic, see Refs [1, 2].
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exhibit some of their general properties. We emphasize that the two-body density contains
a great deal of nuclear information. We also show that the two-body density can be de-
composed into a sum over one-body transition densities. We demonstrate how the short-
-range part of the two-body density is calculated in the independent-pair approximation
for nuclear matter, and we discuss three model calculations of the two-body density
containing: Pauli correlations, correlations induced by the hard-core interaction, and
correlations coming from a Moszkowski-Scott interaction, which has an exponential
attraction outside of the hard-core repuision.

We use these model correlation functions as a basis for a discussion of two classes
of measurements of the correlation function where one has relatively well-known probes.
First, we discuss inelastic sum rules for both electron scattering and very high-energy proton
scattering from nuclei. We calculate the inelastic sum rules for nuclear matter and also
apply this analysis to the finite nuclei 2C and 'O. We emphasize that the low-momentum-
-transfer part of the sum rules depends critically on the finite extent of the nucleus and
the low-lying collective modes, and hence on long-range correlations. There are significant
differences, however, between various types of short-range correlations in the high-momen-
tum-transfer part of the sum rules. The magnitude of the short-range correlation effects
are small in the Coulomb sum rule, as first emphasized in the pioneering work of McVoy
and van Hove [3]. The short-range correlation effects are three times as large in the nucleon
sum rule, and of course the clementary cross sections are much larger in this case. One
may be able to see mcasurable effects with high energy protons. We emphasize that meson
production may place a fundamental restriction on our ability to measure the sum rules,
and indeed to describe nuclei in terms of elementary nucleons.

The second measurement process we discuss is that of high energy elastic proton
scattering from nuclei as described in Glauber’s multiple scattering approach [4]. Here
the two-body density and two-body correlations affect the double and higher order multiple
scattering processes. The overall effect of short-range correlations on the elastic
differential cross section are small, however, as has been noted by other authors in this
field.

In fact, many of the results presented in this paper have been discussed by other
authors in one context or another. Here we try to take a unified approach to the problem
of correlations in nuclei, presenting their general properties, discussing their role in nuclear
structure, calculating some model two-body densities, and then analyzing in some detail
two possible measurements of these densities where one has relatively well-known
probes.

Section 2 contains the general discussion of nuclear densities. In Section 3 we discuss
the theory and measurement of one-body densities very briefly. In Section 4, we discuss
the theory of two-body densities and carry out the calculations of the model two-body
densities for nuclear matter discussed above. Section S contains a discussion of measurement
of two-body densities, both through the inelastic sum rules and through elastic hadron-
-nucleus scattering at high energies. Section 6 is a very brief discussion of some other
possibilities for measuring the two-body densities, and Section 7 is a short sum-
mary.
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2. Nuclear densities

We proceed from the assumption that the nucleon coordinates provide a complete
set of variables for a description of the nucleus, and thus neglect any explicit dependence
on the mesonic degrees of freedom. We further assume that there is a ground-state wave
function Po(xy, ..., X4)4,.. ., for the nucleus where the subscripts « denote appropriate
spin and isospin components for the identical nucleons, and we define the 4-body nuclear
density as the square of this wave function

Q(A)(xls s Xg) = [Polxy, .oy xA)lZ' (2.1)

The appropriate spin sums are implied. This is the probability for finding the nucleus in
a certain spatial configuration, and is a symmetric function of the coordinates®. Often one
does not need all of the nuclear information contained in this expression, and it is useful
to define inclusive densities

oM(xy, . x) = Jdxgyy o d o (xy, o, xy) 2.2)

where 4-n of the nucleon coordinates are integrated out. For example, the two-body density
is defined by integrating over all-but-two of the coordinates

0 P(xy, x5) = [ dxy ... dxj@o(xy, ..., x)I° 2.3)
and the one-body densities by integrating over all-but-one coordinate
o V(xy) = | 0Py, x,)dx,. (2.4)
Note that here

[ oM (x)dx = 1. (2.5)

The one-body density gives the expectation value of any one-body operator depending on
position only according to

A
(Do _; 0(i) 90> = A | 0V(x)0(x)dx (2.6)

and similarly the two-body density provides the expectation value of any two-body operator

A

. o A(4—1
{ Pyl Z 0, j) (9o = %JIQ(Z)(x, VO(x, y)dxdy. (2.7

i<j=1

2 We do not deal here with the full A-body density matrix where the coordinates of the nucleons in
the bilinear expression in Eq. (2.1) are evaluated at different points. The full density matrix is needed,
for example, in the evaluation of the kinetic energy operator which involves derivatives. The definition
in Eq. (2.1) is sufficiently general for the present discussion.



The n-body densities in Eq. (2.2) possess the expansion
91,2, ..., 1) = 0" (D "(2) ... ¢Um)
+ Y [o(De(2) ... o(m)]

all possible pairs of contiactions

+ ¥ [o(De(2) ... o(n)]

all possible three-body contractions

“+ ...
+ ¥ [e(De(2) ... o(m)] (2.8)

all possible n-particle contractions.

The justification for this expansion given by Foldy and Walecka [5] lies in the fact that
Eq. (2.8) fulfills all requirements of symmetry and normalization. This expansion is, in
fact, only a recursive definition of the n-particle contraction C(l, 2, ..., n). It is identically
satisfied for n = 1

o(xy) = 0M(xp) 2.9
and for n = 2, Eq. (2.8) defines the pair contraction
0@xy, x3) = 0 V(x)e(x2) + CPxy, x,). (2.10)

Note by definition, the pair contraction is symmetric and must vanish when integrated
over either of its arguments. For n = 3, we have

9(3)@1, Xy, X3) = Q(U(xx)Q“)(xz)QU)(xa)+ Cm(«"n xz)g(i)(x3)+C(2)(x2, x3)9(n(x1)
+CP(x3, x1)0M(x,) + C I (xy, x5, x3) (2.11)

where again C(1, 2, 3) is symmetric and must vanish when integrated over any of its argu-
ments. The extension to Eq. (2.3) is evident. It clearly fulfills the normalization condition.

[ 0™ (xy, Xz, .0y x)dx, = 07 Dxy, x4y .00, X y) (2.12)
since Eq. (2.5) holds by definition and
| C™xy, x3, ..., x,)dx, = 0. (2.13)

Note that this last relation also implies that the expansion in Eq. (2.8) correctly reproduces
the expectation value of any one-body operator according to Eq. (2.6), and any two-body
operator according to Eq. (2.7).

If spin (including isospin) is explicitly included to allow for the possibility of computing
matrix elements of spin (isospin)-dependent operators, then the one- and two-body densi-
ties become matrices in the spin indices

9(2)(x1s x2)a1a2;a1’az’ = jdxii dxA¢0(x1’ AR xA)m...aA
X ¢(*;(x19 ceey xA)a;’az’ag...z,o (214)
Q(”(xl)a;;a;’ = j Q(Z)(xb xz)alaz;ax’azde' (2'15)
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(Repeated indices are summed.) The expansion in Eq. (2.8) is immediately generalized to
this case [5]

It is convenient to also have a definition of the same densities in second quantiza-
tion [6].

A(A_ 1)9(2)(x1’ xz)auaz;ul'az' = <Wo|’/A)il'(x1)@12'(x2)17’a2(x2)17)a1(x1) i,P0>a (216)
A0 (X agsay = {WolPu, (XDPe, (1) [Po)- (2.17)

These expressions provide the appropriate expectation values of one-body and two-body
operators. Here |¥,) is the exact ground state of the target in second quantization.

By taking a Fourier transform, we can discuss densities in momentum space. One-
and two-body form factors are just expectation values of special one- and two-body opera-
tors

3 g) = [ & %W ydx = V(- g%, (2.18)
(g1, g2) = § € 0PN xy, 2,) Pdxydxy = G~ g1, ). (219)
In momentum space, the normalization conditions, Eqs (2.4), (2.5), become
aM) =1, (2.20)
8Xg, 0) = 6“(g). (2.21)

It is important to note that all many-body densities can be expressed in terms of one-
-body static and transition densities. Therefore, if we know all one-body transition densi-
ties, we know in principle all many-body densities as well. We may immediately establish
this relationship by using the canonical anticommutation relations

{0u%), DI} = 6,500 (x~p),  {Dux), (1} = (P}), DI} =0 (222

in Eq. (2.16) and then inserting a complete set of states
LIl = 1. (2.23)
This leads to the expression
A(A~ 1)9(2)(x1, X;) = A? Z Qgit)(xl)gﬁ))(xz)_Aé(s)(xl “xz)Q(n(xx) (2.24)
where the one-body transition densities are defined by

ApD(x) = <y, Pl ()vx) [yo)- (2.25)

With a Fourier transform, we can establish the remarkable relation in momentum space

A(A=-1)0Dqy, 02) = A Y 86(a)80)(a2) — 46 V(q: + 42)- (2.26)
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Thus “exhaustive” knowledge of the one-body transition form factors provides us immedi-
ately with all the two-body form factors. Equations (2.26) can be rewritten as

A(A—- 1)5(2)(‘21, ) = A(A_l)é(”(§'1)9~(l)(92)

+A[@(”(‘11)5(1)(92)“@(”(91 +42)}+A2 36(a)8'8(q2) (2.27)

n#0
and in coordinate space

A(A=1)0PU(xy, x3) = A(A—1)e M (x)0! (x)
+ A[g(”(xl)g(l)(xz) =6 (x, — x)o V(x,)]+ 47 Og)ln)(xz)Q(l)(xz)-
n#0
(2.28)

Here the two-body form factor and ground-state density are separated in a sum of three
terms
(i) a “no-correlation” term in which the two-body form factor (density) factors into a
product of one-body form factors (densities) of the ground state,
(if) a “‘self-correlation” term which is proportional to 4 and contains only ground-state
information,
(iii) a true correlation term which is proportional to 4% and exhibits only information
about transitions to excited states.

The last two terms in Eqs (2.27), (2.28) are called the two-particle correlation form
factor and density respectively (compare Eq. (2.10))

AA-1)CP(gy, 4,) = A[6" (418 (g2)~ (g, + 42)] + 4 Z 36:(41)870'(42), (2.29)

A(A— 1)C(2)(x1> X,) = A[O(l)(x )0(1)("72) 5(3)(-‘71 xz)o(l)(xl)]+A2 2 Q(l)(xl)Q:(né)(xz)-

(2.30)

These equations are just Fourier transforms of each other.

Equation (2.30) can also be used to identify “short-range’ and “long-range” correla-
tions in nuclei. We rewrite the last term in Eq. (2.30) for an angular momentum J, = 0
nucleus in a form where the angular dependence of the transition densities appears ex-
plicitly

A? Z e(”(xl)e“’(xz) = 4n4* ;o Qs)lv)(x1)9(1)(x2)YJtMV(£1)YJ‘,MV(iz) (2.31)
Ey,Jv, M,

=A% 3 (21,+1)06)(x )0t (x2) Py (cos 8;5) (2.32)

.
where n = {v, E,, J,, M,, ...} is a complete set of quantum numbers characterizing the
excited state and 0,, is the angle between X, and x,. The low-lying (E, < E,;,) transition
densities o{)(x,) with J, < Jn; are strongly peaked at the nuclear surface and have
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x; = x; = R They will give rise to the longest-range correlations in nuclei, which run
over the whole nuclear surface. We are therefore led to the (still exact) separation

AA-DCP(xy, x,) = AA—1D [CH(x,, )"+ CH(x,, x,)°M"] (2.33)
where the long-range part
AA-1)CP(xy, x,)'°" = Ao (x )V (x,) + 47 Y 06 (x)0le(x)  (2.34)
v£0

v <IminEv<Emin

has to be determined from experiment or estimated in a collective nuclear model, and the
remaining short-range part

A(A-DCPx,, )™ = — A5 (x, —x,)0V(x,) + 47 T 0 )(x)0l(x2)  (2.35)

(Here Z is sum over the complement of the region in Eq. (2.34)) is reasonably well-known
from nuclear-matter calculations.

3. One-body density: theory and measurement

If we have a model or theory of the nucleus, we can compute the one-body density
through Egs (2.3), (2.4), or (2.17). In an independent-particle model of the nucleus, the
one-body density is just average of the square of the single particle wave functions of the
occupied states. Knowledge of the one-body density from any source is enough to provide
the expectation value of any one-body operator. The one-body charge density, for example,
can be found from elastic electron scattering which directly measures the form factor

F(q) = [ jo(ax)o(x)dx. @3.1)

The one-body density evidently does not determine the nuclear wavefunction. In fact, since
all the other 4—1 coordinates are integrated over, the one-body density just determines
an average one-body property of the nucleus. It is presumably always possible to construct
a one-body potential which, in an independent-particle model, will yield any appropriate
one-body density. For this reason, the analysis of any process involving only one-body
densities can never provide a definitive basis for discussing two-particle correlations in
nuclei®,

4. Two-body density: theory
A. Pauli Correlations

We first briefly review the well-known result for correlations arising from the Pauli
exclusion principle in a uniform system of non-interacting fermions with a spin-degeneracy
of g (note for nuclear matter with both spin-1/2 protons and neutrons we would have
g = 4). We use plane waves in a large volume Q satisfying periodic boundary conditions

3 In this connection, see Ref. [7].



32

for the single-particle wave functions. In this simple model, the structure of the terms
in Eq. (2.30) can be studied explicitly. The particle density is given by

g = 56%3« “.n
and we find
—69(x, —x2) A0 V(xy) = — 00y —x,) C¥olPUxDD(xy) 1¥o)
= —8¥(x, —x,) (gkz/67%) 4.2)

while

A? Y 00 (x)0n0(x2) = Y (WoldT(x)p(xy) [¥,) (T (x)P(x2) [¥o)

n*0 n*0

ki K\ 3j1(kelx; — %)
- 90y (28 [ ) 2= T,
\ Fi-*1 2

Inserting these results in Eq. (2.30), the delta functions cancel yielding for the two-body
correlation density the familiar result

~ 1@, - }_(4) [3J1(kl=1x1"'xz!)]
AA=DET %) = g \Q kglx; — x| + o 44)
A(4-1
= (Qz )[gFG(ixl“le)“l] 4.5)

where we have introduced a correlation function

A [ 1 (3,(kef)\?
gr($) = -1 [1* 2 (7;5—> ] (4.6)

The Fourier transform of this correlation function can be evaluated explicitly with the
result, which we shall need shortly

A A2) - 3 4 fay q
(A—I)C (q, —q) = Aéq’O—A 1*‘*2' Z_k— +3 ’2‘1‘: 61— E-k— (47)
F, F F.

B. Independent pair approximation

The main source of our knowledge of the two-body density in nuclei comes from the
study of the properties of nuclear matter, an idealization, approximately achieved in the
interior of large nuclei. If we take N = Z, turn off all Coulomb effects, and then let 4 —» oo
in the semi-empirical mass formula, we describe a material with the properties: Ej4
= —15.75MeV; kr = 1.42fm?; and ¢ = 0.19 nucleons/fm® where the nuclear matter
density has been estimated from elastic electron scattering results. A great deal of effort
over the past two decades has gone into the theoretical understanding of these properties.
In order to calculate the binding energy of nuclear matter, we need the two-body density,
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since we must compute the cxpectation value of the potential, a two-body operator. The
starting point for the study of nuclear matter is the independent-pair approximation
representing the theory developed by Brueckner, Bethe, Goldstone and others. The basic
idea is the following [6]: The nuclear potential is very strong at small interparticle separa-
tions. It is essential to have the correct two-body density at these small separations. To cal-
culate these densities, one takes the interaction between the pair of particles into account
exactly and solves the Schrédinger equation for the pair in question. The effect of all the
other particles in the medium is taken into account in an average fashion: first, through
the Pauli principle which prevents the interacting pair from going into the occupied levels
and second, through the single-particle spectrum which represents the average interaction
with the other particles. The mathematical expression of this “independent-pair approxi-
mation” is the Bethe-Goldstone equation

Yxxol, 2) = ¢, (D, (2)+

z b (DD KKV P o

E—Eg x,

Ky’ >kp K2'>kF
E_EKﬂ(z == <K1K2|V1'PK1K2> (4.9)

Here ¢ = (1/Q) e *n, are the single-particle solutions for a uniform medium. #; is the
appropriate spin (isospin) wave function. Equations (4.8)—(4.9) are simply the two-particle
Schrédinger equation written in integral form, where the sum over virtual states omits
the contribution of the states occupied by the other nucleons inside the Fermi sea. Once
the Bethe-Goldstone wavefunction is determined from Eq. (4.8), the energy shift of a pair
of particles due to the interaction ¥ can be calculated from Eq. (4.9). Since the interaction
potential depends only on the relative coordinate, the center-of-mass momentum remains
a good quantum number for the interacting pair and a two-particle wavefunction takes
the form (assuming V is spin-independent)

1 .1
Ve, (1,2) = —=eF ¥ —

I N Px(n,,(Hn:,(2) (4.10)
N

where

P = Kl +K2, X = .L(xl +x2),
K=31(K—-K)), x=x—x, (4.11)

As an example, we show some solutions to the Bethe-Goldstone equation. Figure 1
shows the S-wave part of the wavefunction for a pair with P = 0 and K = 0. If there were
no interaction, this wavefunction would be j,(Kr). Here the pair is assumed to interact
only through a pure hard-core potential which extends out to a distance ¢ = kgb = 0.6
where b is the hard-core diameter. Because all other degenerate levels are already occupied
by other nucleons, there can be no phase shift in the relative wavefunction at large distances
and the Bethe-Goldstone wavefunction must ““heal” to the unperturbed wavefunction over
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a distance of the order of kg '. It is clear from Fig. 1 that the wavefunction vanishes at
the hard-core and goes over to the unperturbed wavefunction at a ‘“‘Healing distance”
of about kgr = 1.9. Also shown on this figure is the dimensionless interparticle distance

\ HEALING DISTANCE

Fig. 1. The S-wave part of the Bethe-Goldstone wave-function for a pair with P = 0, K = 0 and hard-core
interaction in nuclear matter {6]. Here kpd = (372/2)1/3 is the average interparticle spacing

defined by the relation 4/Q = 1/d® = 2k3/3n%. Figure 2 shows the deviation of the true
wavefunction (kg/K)u(Kr) where v %r) = u(Kr)/Kr from the unperturbed wavefunction
(kg/K) sin Kr for several other values of center-of-mass and relative momentum (given
in units of k) of the pair. These curves are due to Gomes et al. [8]. Note the similarity

(C=0.6)
0‘6_ P=0.2;K=0.3
O.Z'l i 1 |/l/_-|\
I ~——4 5 6 7
O’SNO; K*0.3 oe VQZ: K+0.6
0.2 N ) 1 K‘. 0'2-. | ! e A
| 2o~ 5 6 7 I N~——— 8% 6.7
o'skso; K=0.6 °'6N=o.4; K=0.2
0.2 . N i | ot Ty 0.2 i 1 1 : ena. ;
N3~ 5 6 7 i ~——— 5 6
Ker Kgr

Fig. 2. The deviation of the exact S-wave wave-function {(kp/K)u(Kr) from the unperturbed wavefunction
(kg/K) sin Kr for a pair of particles with hard-core interaction in nuclear matter for several values of the
center-of-mass and relative momentum (given in units of ky; here P = 1/2(K,+K3)) [8]

in the healing distance and the bulge of the hard-core wavefunction over the unperturbed
value. Figure 3 is taken from a paper by Moniz and Nixon [9] and compares the hard-core
wavefunction with their own two-particle wavefunction generated from the ‘*‘standard
hard-core attractive-exponential potential” of Moszkowski and Scott [10] for different
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values of K. These curves were calculated in the reference spectrum approximation of
Bethe et al. [11] whereby particles above the Fermi sea are assumed to have the free par-
ticle spectrum while holes below the Fermi sea arc assumed to move with an effective mass
in an attractive potential. (Here a value kg = 1.36 fm~! is used for nuclear matter). Also

12
- =3
a9
08}
o7r

ost i

o5k { —7:=2fm
Pt —-—B5TGAARD L
y | = — GOMES ~WALECKA
i NONINTERACTING | |
02t -

o1 +

e k=085 k=0%8fm | [ kelOke=136Fm™

-1

uikr)/kr

L i

. rlfm) ritm) r{fm}
in) (b) fc)

Fig. 3. S-wave relative wavefunctions for a pair of nucleons with P = 0 in nuclear matter under various
assumptions about the interparticle interaction (see text) [9]

shown are the solutions of @stgaard et al. who carried out a detailed solution to the Bethe-
-Goldstone equation with realistic inter-nucleon potentials [12].

Knowing the Bethe-Goldstone wavefunction, we can immediately construct the two-
-body density in the independent-pair approximation. We assume a spin-isospin degeneracy
g for each momentum state (g = 4 for nuclear matter). Because of the short-range of the
singular part of the nuclear force, the strongest correlations will be in S-states, as we have
seen. For all unlike pairs of particles, we shall thus use the S-wave correlated Bethe-Gold-
stone wavefunctions. For like particles, for example, pT and pf, relative S-states are ex-
cluded by the Pauli principle and we shall simply assume antisymmetrical plane waves for
the pair. Thus, the two-body density takes the form

A(A-1o'P(1,2) = gz Z 7 (LD +g(g— 1)2 iﬂ”x}\zfcz(l 2
Kng

K1+ K>
(4.12)

The degeneracy factors in front are the number of like and unlike pairs for given values
of K, and K,. Here, Ng,x, is a normalization constant defined by

Nik, _ 1 KKz
dezlw‘z’(?xz(lﬁ)lz =0 = 5(1+ gki) @.13)
F

and is inserted so that the two-body density obeys the normalization condition of Eq. (2.4).
Note that for nuclear matter we have from translational invariance

= o. (4.14)
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We may define a two-body correlation function as in Eq. (2.10)
0 P(1,2)— (1)) = C(1, 2). (4.15)

This has the property that it vanishes identically if integrated over either one of the coordi-
nates. For a uniform medium, this correlation function must take a form which depends
only on the relative coordinate, and we define

C(1,2) = ¢*[g(lx; —x,)—11. (4.16)
Using the identity
kg kg kp kp
AA-D=g) ) +glg-DY ) (4.17)
Ki#K> K K

we may write the two-body correlation function for nuclear matter in the independent-pair
approximation with S-wave correlations in the following form:

kg kg

A(A-1)C(1,2) = gzz Z(quS?;K,(I,Z)IZ—l)
K1$Kz
g(g 1) Z Z(IQTmz(l ;21 1) 4.18)
NKsz
= A(A—1) [Crg+ Cyg]- (4.19)

The first term is the correlation function one would get for a pure, non-interacting Fermi
gas and comes from the correlation of like pairs. It is precisely the result given in Eq. (4.4).
The second term is the result of S-wave correlations between unlike pairs. We assume only
S-wave correlations in the relative wavefunction (Eq. (4.10)), that is

yEo(r) = v °(n+ 12(:) JUKN)i'(21+1)P(cos ;) (4.20)

and, further, that the relative wavefunction is independent of the total momentum of the
pair (this is a good approximation — see Fig. 2). Using the following relation

dKz ) dQg
= K¥(1-3K+1K%»dK —= 421
_[41:/3 473 f ( +H K 4n @-21)

which is the distrlbutlon of relative momenta K = }(K,—K,) in a Fermi gas, we can
write the contribution of the unlike pairs in the following manner

1

~1\ 74\? aQ
A(A-1)Cp = (?——) (-) [24 fxza -3 K+1K%dK —=
g Q 4z
(4]

IN/A
x (|92 12 = | jo(Kx)|D)] + (gg )(§> [— [%F] 4.22)
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here x = kgr and n is the average value of the normalization constant

1 1
dK, [ dK,
n KK+ (4.23)

n= <’7K1Kz> = _[47!/3 m
0 0

Note that the final terms in Eqs (4.4) and (4.22) are of order 1/Q with respect to the first
terms. These terms are only important when taking the ¢ = 0 Fourier component of
these expressions. We have calculated the pair correlation function from these expressions
for two different nucleon-nucleon interactions. First, we have taken a pure hard-core
interaction. A convenient parametrization of the hard-core Bethe-Goldstone wave func-
tions (Fig. 2) is given in Ref. [§] as

2 .
sin (Kr) 3 sin (Kb) [1_ F > (ﬂr):l
Kr Kr [1_%&(&)]

where b is the hard-core radius, f = 1.10 kg, and Si(x) is the sine-integral function. This
gives a remarkably good fit to the healing length and to the first bulge past the healing
length, for all values of the center-of-mass and relative momentum of the interacting pair.

Second, we have used the “‘standard hard-core potential” of Moszkowski and Scott [10]

v °(r) = (4.24)

00 r<b
V(r) = (4.25)
—voe "V r>h

where v, = 260 MeV, b = .4fm, and u = 2.08 fm~!. This potential gives an average over
the 'S, and 38, effective ranges and a bound state at zero energy. The wavefunction calcu-
lated by Moniz and Nixon [9] with this potential in first approximation using the reference
spectrum method is

Kryic °(r) = sin (Kr)—sin (Kb)e ¢~ ny B0 [ TEEOA() —e T TR(BY]  (4.26)

2h

where

=

(y—p) sin Kr2 K czos (Kr) ~1e-D sin (Kb) 2y
(u=7)°+K H(u+2y)

(u+7v) sin (Kr)+ K cos (Kr)
(u+7)*+K*

4.27)

with m* = 1 and y = 2 fm~!. The pair correlation function calculated from these expres-
sions is shown in Fig. 4. Since the Moszkowski-Scott [10] potential contains an attraction
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outside the hard core, the wave function is pulled in, the healing distance becomes smaller,
and the bulge over the unperturbed wavefunction occurs at a smaller interparticle separa-
tion than with just the hard-core interaction. The calculations have been performed for
two values of the Fermi momentum kg = 1.42 fm~! (nuclear matter) and kg = 1.12 fm—!
(*2C). To get the effective correlation function between two nucleons we have to take the
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Fig. 4. The interacting-pair and Pauli correlation functions (see Eqgs (4.4), (4.16), (4.19), (4.22), 14.28)) for
several types of correlations and nuclear matter at differential densities. The final g(r) is the statistical average
of these curves (Eq. (4.28))

statistical average of Pauli and interacting pair correlation function, as indicated by Eqs
(4.16)-(4.19), i. e.

-1 1
g(l‘) = [L] g(r)interacting puir+ li"‘:' g(r)Pau]i (428)
g g

where g = 2 for p-p correlations and g = 4 for N-N correlations. Since the bulge in the
interacting pair part of the correlation function occurs just where the Pauli contribution
is rising most steeply, the net correlation function for nuclear matter is a smooth, mono-
tonically increasing function.

Using these densities and a hard-core attractive-square-well potential adjusted to fit the
singlet effective range and scattering length, the binding energy per particle in nuclear
matter can be computed as a function of the density. This calculation is discussed in detail
in Chapter 11 of Fetter and Walecka [6]. This is not meant to be a definitive calculation of
the properties of nuclear matter, but merely illustrates that the two-body density which
we have computed is capable of explaining the saturation properties of nuclear matter.
With a more sophisticated and detailed calculation of the two-body densities, one can get
very close to the equilibrium properties of nuclear matter. Thus, we do have a basic theoret-
ical understanding of the two-body density at small interparticle separations in nuclei.
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The small healing distance provides a justification of our independent-pair approxi-
mation, for by the time the two-particle separation has reached the average interparticle
spacing the two-particle wavefunction has healed and the particles move as if in plane-
-wave states. This small healing distance thus suppresses the contributions of higher clusters
to the energy. The small healing distance also provides a basis for understanding the suc-
cess of the single-particle shell model in nuclei. Most of the time the particle moves through
the nucleus as if in a plane-wave state, and the only effect of the strong short-range inter-
actions between the particles is to modify the two-particle density at small interparticle
separations. For example, the one-body density in nuclear matter (Eq. (4.14)) is a smooth
well-behaved function.

The short-range anti-correlation of nucleons in the nucleus has other basic theoretical
implications. In fact, in a sense, it can be said that the short-range anti-correlation between
nucleons, and the small healing distance in the nucleus are responsible for most of nuclear
physics as we know it. Not only do we understand the equilibrium properties of nuclear
matter in the independent-pair approximation, and the success of the shell model, but also
the suppression of many-body forces in nuclei, since many nucleons can never get close
enough together so that one nucleon will modify the meson force ficlds between the
others*. For a similar reason, we can understand why nuclei behave to an amazing extent
as collections of individual particles with the properties of free nucleons, for the anti-
correlations keep the nucleons apart and suppress the contribution of meson exchange
currents to weak and electromagnetic processes>.

Before leaving this section, we would like to re-emphasize that the two-body density
in Eq. (2.3) is actually a very complex object. We have here concentrated on the behaviour
of this density at small interparticle separations, for it is the two-body density in this region
that is necessary for computing the energy. There are also contributions to the two-body
density from long-range separations in nuclei. For example, in a deformed nucleus, if one
nucleon is at one bulge of the nucleus, then there will be a positive probability for finding
the other nucleon at the bulge on the other side of the nucleus and a vanishing probability
for finding it in the depleted regions of nuclear density at the nuclear surface. In nuclear
matter, there will be contributions of long-range correlations to the two-body density
coming from the collective modes of excitation of the medium. In graphical language,
there are modes of excitation in the medium which must be discussed by summing bubble
diagrams, for example, rather than just the ladder diagrams we have concentrated on to
get the binding energies. Thus, we can expect that our independent-pair approximation
describes the two-body density correctly at small interparticle separations and presumably
describes the oscillations in this density which occur with spatial variations over distances
of the interparticle separation or smaller. There will also be long-range spatial correla-
tions in the two-body density which we will not be able to describe in the independent-pair
approximation but for which we need some modecls of the collective oscillations of the
nucleus.

4 See, e.g. Ref. [13].
5 In fact, the anti-correlation means that the only important exchange current is that coming from
one-pion exchange, and calculations indicate that this has small electromagnetic effects.
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5. Two-body density: measurement

Let us turn now to the question of how we can obtain a direct experimental measure-
ment of the two-body density. We will first discuss the theory of two phenomena which
directly involve the two-particle density: first, the general analysis of inelastic sum rules
and second, the analysis of elastic hadron-nucleus scattering at high energy.

A. Inelastic sum rule

Here we have two specific processes in mind. The first is inelastic clectron scattering
(e, ¢") through the Coulomb interaction. This is a clean analysis since the Coulomb contri-
bution to the sum rule can be in principle separated by a Rosenbluth plot, although to
our knowledge this has never been done. The second application is inelastic nucleon
scattering (N, N’) at high energies in the impulse approximation (cf. Refs [14-16)). Here
we make the simplifying assumption that the projectile interacts with a spin-isospin inde-
pendent amplitude with the nucleons inside the nucleus, and we neglect the distortion
of the incident projectile. In fact, this distortion can probably be included in the analysis
without essentially changing the result as we shall see. This analysis may be applicable to
experiments at LAMPF with several-hundred MeV protons.
In both these cases, the double differential cross section for scattering from the nucleus
takes the form [6]
1 d%
o, dQ'de’

= S(q, ) = Z IK¥.lo(— ) [¥o>1"8(w— (8, —£0)), (CRY
o(—q) = [ € *o(x)dx. (5.2)
Here g, is the point cross section for the scattering of the projectile on a free target particle,
q is the momentum transfer, and  is the energy transfer to the target by the projectile.
f(x) is the nuclear density operator. For Coulomb scattering of electrons (we refer to the
response function in this case as C(g)), 8 is the charge density ®f % (1+15)9. In the case of
the high-energy scattering of nucleons or other hadrons in the impulse approximation
with a coherent elementary amplitude (we shall refer to the response function in this case
as S(g)), 6 is the matter density P¥{. If we restrict the sum over » in Eq. (5.1) to all states
except the ground state, we have the inelastic response surface and shall denote this with
a subscript “‘in”. We can also eliminate the contribution of the ground state in Eq. (5.1)
by using the fluctuation density defined as
0= 0—<yo blyo> (5.3)
maintaining the sum over a complete set of states.
By integrating Eq. (5.1) over energy loss we arrive at the inelastic sum rule®

r 1 d% ; - . ' 5

jdw [— vl B fsin(q’ w)dw = S;,(q) = Z K¥le(— ¥o)l”.  (5.4)
Up dQ de in 2

Q0 4]

n

¢ Note that experimentally, for example in (ee’), we are limited to the region @ < g. We must assume
that all the important target excitations are contained in this region to make use of these results.
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We may now use closure on the sum to derive the expression
Sinl@) = [ 71" [ &7 dxdy[ (¥ DT PP D) Wod
~{ Yol PHPE) [Po> {¥olDT(MP() [¥o)] (5.5)

where the matter density has been written in second quantizaiion. Making use of the
canonical anticommutation relations (Eqs (2.22)), we can write the inelastic sum rule as

Sin(q) = A[1=[Fa(@)*]+A(4~1) | ™' *C(x, y)e'* *dxdy (5.6

where C is the two-body correlation function and F,(g) is the Fourier transform of the
ground-state matter density

Fo(q) = [ € o'V (x)dx. (5.7)
For a uniform system, these equations take the simplified form
Sinlg) = A[1—=0,,0]+0 [ e™" [A(4 - 1)C(2)]dz. (5.8)
If we insert the correlation functions from Eqs (4.4), (4.19), (4.22), then the result is
Sin(9) = A[1-(1 -3 {+3 3)0(1- )]+ 50(9), (5.9
Sin(q) = Q[ e [A(A—1)Cpo(2)]dz (5.10)

where { = q/2kg.
The first term on the right hand side of (5.9) is the result for non-interacting Fermi
gases. Making use of Eq. (4.22), we can simplify this result to the form
1

~1\/ 4 . dQ

sBG = (& i xgel 24 | K21 -3 K+ 1 K%)dK =X

Q) (g)(!)ké)je x (1-3K++K°)d I
4]

) -1 A
X (|1P§z=°(x)|2-ijo(KX)i2)] - <§__)( )néqo (5.11)
g le-‘

Here Q = g/ky and x = kgr.
Note that the last term coming from our normalization condition contains a Kro-
necker delta and serves to guarantee the detailed normalization condition [17]

Si(0) =10 (5.12)
and follows from the defining relation, Eq. (5.6), since the volume integral of the correla~

tion function vanishes identically.
The corresponding Coulomb sum rules for inelastic electron scattering are given by

Cin(q) = CFG(q)+C (), (5.13)
Cha(q) 3 (q) . q
—z = 1-(1~-3+30)6000-0 = e =5 (5.14)
BG BG
@ _ K@ 515

Z“A
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The important point here is that the charge density involves only the protons, and it is
only the proton correlation function which enters into the sum rule. There are equal numbers
of like and unlike pairs of protons in the nucleus, whereas when we refer to the matter
density, there are 3 times as many unlike pairs as like pairs of nucleons. This is the
reason for the extra factor 1/3 in Eq. (5.15).

It is also possible to say some things about the behavior of the inelastic sum rules at
long wavelength in a realistic finite nuclear system. For example, we see in the long wave-
length the operator in Eq. (5.2) is simply the volume integral of the density. If this is the
baryon density, the volume integral is the total number of baryons; if it is the charge
density, it is the total number of protons. In either case, this number is a constant of the
motion and it cannot cause transitions. Thus the inelastic sum rule in Eq. (5.4) must vanish
in the low-g limit. Furthermore, if the system is of finite extent, then the particles are
bound, and the two-body densities must fall off exponentially at large separations. This
implies that S;,(¢) and C;,(¢) must be analytic and even functions of ¢ in a certain strip
in the g plane (we assume the ground-state has J = 0). Thus, at long wavelengths the
inclastic sum rules must have the power series expansion

Sinl®)
A

= Bud*+ma®+ .. (5.16)

Cin(q)
zZ

= a. g’ +Bq* +y.4°+ ... (5.17)

Note that the first term in the power series of the exponential Eq. (5.2) is just the dipole
moment of the appropriate density. If it is the mass density, the dipole moment is the
position of the center-of-mass, and this operator cannot give rise to transitions between
different intrinsic nuclear states. For this reason the power series in (5.16) must start as g*.
If we are talking about the charge density, the dipole moment is just the dipole operator
which also governs photoabsorption in nuclei. Thus, the first coefficient in Eq. (5.17) can be
related to the total photoabsorption cross section in nuclei.

1 (ofB)
- dE. 5.18
%o 4n2aZf E (-18)
[4]

This result is due to Foldy and Walecka [18]. Using a simple empirical expression for this
bremsstrahlung-weighted cross section given by Levinger, this coefficient can be evalu-
ated [18]

2
2.q® ~ 0.846 (—q~> : (5.19)
kg

Let us now turn to some examples with the inelastic sum rules. First we concentrate
on infinite nuclear systems. The quantities |1—S;,(g)/4! (the nucleon sum rule) and
[1-Ci.(@)/Z] (the Coulomb sum rule) are plotted as a function of g/kg for nuclear matter
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with kr = 1.42 fm~! in Figs 5 and 6. The correlation effect at high g is a factor of 3 bigger
for the nucleon sum rule (Fig. 5) than for the Coulomb sum rule (Fig. 6) as we have discussed.

The dash-dot curve is a calculation with pure hard-core correlations, starting from Eq. (4.24),
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Fig. 5. The quantity ]1—S;,(¢)/4] (nucleon sum rule) as a function of glky for infinite
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Fig. 6. The quantity |1 ~Cin{g)/4] (Coulomb sum rule) as a function of g/kg for infinite nuclear matter

and the solid curve is calculated using the wave functions of Eqs (4.26) and (4.27) derived
from the Moszkowski-Scott interaction. The dashed curve is obtained by using Pauli
correlations alone (Eq. (5.14)). Here in the intermediate- to high-momentum-transfer re-
gion, there is a clear distinction between Fermi gas correlations, pure hard-core correla-
tions, and the more realistic correlations, including both the effects of the repulsion and
the attraction in the nucleon-nucleon interaction. Similar conclusions have been reached
by Matlecki et al. [19] although we believe with less justification for the particular correla-
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tion functions used. We have not extrapolated these caiculated curves into the long-wave-
length region for the reasons which we have discussed previously.

To understand what is happening here, the quantity x2[g(x)—1] is plotted in Fig. 7.
This is the density which actually determines the contribution of the unlike pairs to the
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Fig. 7. The quantity x*[g(x)—1] as a function of x = kgr. (See Fig. 4 and caption)
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Fig. 8. The quantity {1 —Cjn(g)/Z| (Coulomb sum rule) as a function of q/kF for e +12C scattering computed
using Eq. (5.20) and various types of correlations (see text). Also shown is the correct long-wavelength
behavior (Eqs (5.17)-(5.19))

sum rule in Eq. (5.10). This must be weighted by jo(Qx) in order to find the Fourier
component at a particular momentum Q = q/kg.

In Fig. 8 we make a calculation for the finite nucleus !2C. Here we take the two-body
correlation function (and hence the two-body density by Eq. (2.10)) to be of the form

C(xy, x3) = 9(1)(3‘1)9(1)(-‘72) [e(lx —x;)—~1]. (5.20)
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The one-body densities are taken from elastic electron scattering and the two-body
correlation function is calculated for nuclear matter with a Fermi wave number
determined by Moniz et al. {20] from the width of the quasielastic peak in '?C. At
long wavelengths (small values of ¢), the finite extent of the system is important and the
Coulomb sum rule in Fig. 8 must start as ¢2. In fact, the coefficient (Eqs (5.17), (5.18)) is the
bremsstrahlung-weighted integrated photoabsorption cross section which is dominated
by the giant resonance collective mode in nuclei. Also indicated in Fig. 8 is the result ob-
tained from the first term in the expansion (Eq. (5.18)) and the arrow indicates an estimate
of the radius of convergence of this expansion based on the binding energy of the last
nucleon. The results for both hard-core and Moszkowski-Scott correlations are quite close
to those obtained from Pauli correlations alone for momentum transfers out to g/kg < 2.
There is a decided difference at larger values of g, although the overall magnitude of the
quantity plotted is small. That the correlations play a very small role in the Coulomb sum
rule is an old conclusion due to McVoy and van Hove [3]. In fact the solid curve gives
a very good match to the calculations of McVoy and van Hove in the region 0 <{ g/ky S 2.
These curves also show the clear inadequacy of any Fermi gas calculation for a finite
system at long wavelengths.

The main conclusion from this figure is that one can only expect 1-10%; effects on the
Coulomb sum rule coming from hard-core, or more realistic, correlations between unlike
protons. These effects, while small, should be measured. There are real differences between
the curves calculated with Pauli, hard-core correlations, and with more realistic correla-
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Fig. 9. The quantity |1 ~Si4{(g)/4| (nucleon sum rule) as a function of g/kr for p+'2C scattering computed
using Eq. (5.20) and various types of correlations (see text). Also shown is the Jong-wavelength behavior
(Eq. (5.16)) obtained from explicitly summing the contribution of the first three excited states in '2C

tions. The effect is clean and should be measured by separating the Coulomb from the
transverse scattering.

Figure 9 shows the inelastic sum rule for high-energy nucleon, or other hadron scat-
tering from '?C. Here the effects of correlations are larger as we have indicated. In the
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intermediate- to high-momentum-transfer region there is a clear distinction between Fermi
gas correlations, pure hard-core correlations, and more realistic correlations, including
both the effects of the repulsion and attraction in the nucleon-nucleon interaction. The
low-momentum transfer behaviour obtained by explicitly summing the contributions of
the first three excited states to p-'2C scattering is also indicated in this figure.

To try and indicate that this is not all nonsense, Fig. 10 shows the similar calculation
of the sum rule for *He where the inelastic sum rule has been measured by inelastic X-ray

o INELASTIC SUM RULE
LIQUID 3He T=056"%
ke = 0.786 A™

:‘I —— EXPERIMENT 1 /
i ACHTER AND MEYER |/
j ——— PAULI i
j —— HARD CORE I
i it
{ §
i ' -
4 5

10 L.
o] i

\

|

|
1
t
i
1
t
i
1
!
i
{
1
2

q/ke

Fig. 10. The inelastic sum rule |{1-S;ia(g)/4] as a function of q/kg for liquid *He calculated using S-wave
hard core correlations with ¢ = kgb = 1.3. The experimental data is from Ref. [21]. Also shown is the
calculated long-wavelength behavior coming from phonon excitation

scattering from 3He liquid [21]. The experimental points are shown on the figure, together
with a calculation using the same hard-core correlation function which we showed pre-
viously, and the hard-core radius of ¢ = kgb = 1.37. This was taken from a paper by
Burkhardt [22] who used a hard-core plus attractive square well potential chosen to ge-
nerate the same set of phase shifts as the Leonard-Jones potential for *He. It is clear that
this very simple model does give a qualitative explanation of the experimental observation.
Again, we have not taken the curves down to small values of ¢ because it is an experimental
fact that the inelastic sum rule in this region is.given by the phonon contribution [23]
and these long-range correlations, or collective effects, have not been built into two-body
correlation functions calculated in the independent-pair approximation developed to
reproduce the small-distance behavior of the two-particle correlation function. This
inadequacy is clearly understood in Fig. 11, which shows the function g(r) used for helium
in the simple hard-core model and the function g(r) extracted from a Fourier transform
of the experimental data by Achter and Meyer [21]. The present calculation is in no sense
meant to be a definitive description of the inelastic sum rule in 3He. It is meant only to

7 Note for *He, A/Q = 1/d® = k$/37%, so that kpd = (3n%)'/3 = 3.09.
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illustrate that there are effects at high-momentum-transfer coming from the short-rang:
correlations and that we can hope to calculate these effects in the independent-pair approxi-
mation.

There is still a problem of distortion of the projectile wavefunction in the case of
high-energy hadron scattering from nuclei. From Eq. (5.6), we see that the effect of distor-
tion will be to replace the plane wave in the Fourier transform by the distorted wave in the
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Fig. 11. The correlation function g(r) for liquid 3He. Shown are the values obtained from S-wave hard core
correlations with ¢ = kpb = 1.3 as well as the value extracted from their data (Fig. 10) by Achter and
Meyer [21]). Here kpd = (37%)'/3 is the average interparticle separation

optical potential of the nucleus. To the extent that the one-body density varies only slowly
over the region of correlation, it is clear that the main effect of distortion in Eq. (5.6) is to
provide an A in the denominator in Eq. (5.15), but need not change the general shape of
the curve in Fig. 9. This point clearly needs further study and is currently under examina-
tion.

We believe there is enough here to say, however, that the investigation of the inelastic
sum rule in high-energy nucleon scattering, for example at Los Alamos, may be able to
provide some information on the two-nucleon correlation function.

There is still the basic problem for both sum rules in Figs 8 and 9 of being able to
separate nuclear physics effects described in terms of elementary nucleons, which is the
basis of all of our discussion of nuclear densities and sum rules, from the effects of the
meson degrees of freedom. These are not included in our calculations and are evidenced
by contributions of meson production to the scattering processes. One may never be able
to separate these processes in a single-arm experiment where only the scattering projectile
is detected; however, it may be possible to subtract these effects by doing coincidence
experiments. In any event, pion production places the most severe limitation on being able
to make accurate measurements of the sum rules. This may have, in fact, more profound
implications for nuclear physics and may indicate that one really cannot consistently do
nuclear physics in terms of elementary nucleons.
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B. Elastic proton-nucleus scattering at high energies

The elastic scattering of high-energy hadrons by nuclei is very well described through
the analysis developed by Glauber [4] and others. In this analysis the incident hadron un-
dergoes repeated forward scattering from the nucleons in the nucleus. The nuclear amplitude
is then computed by averaging over the positions of the target particles using the ground-
-state density (Eq. (2.1)). Since we now have a reaction mechanism which is understood to
a high degree, and which is sensitive to the location of all the target particles, we may hope
to use this to study two-particle densities in the nucleus. Since the two-body correlations
defined in Eq. (2.10) only produce corrections to the double and higher-order scattering
terms, correlation effects in this process will turn out to be very small. In the following
we will use the nuclear two-body densities we have developed and the Glauber formalism
to study elastic p-'2C and p-!°O scattering and we will exhibit the effects of correlations
caused by the Pauli exclusion principle, by a pure hard-core interaction, and by the Mosz-
kowski-Scott potential.

1. The Glauber formalism

In the high-energy Glauber multiple scattering formalism [4] one makes the following
assumptions and approximations:
(/) The eikonal approximation which limits us to high energies and small scattering angles.
(ii) The closure, or “frozen nucleus” approximation which neglects the Fermi motion of
the target nucleons.
(iii) The dynamical assumption of the additivity of the phase functions which in potential
scattering is equivalent to the assumption of non-overlapping elementary potentials.

Corrections to these approximations have been studied by many authors (¢. g. Wal-
lace [24]) and have been shown to be surprisingly small. Thus it appears that we can have
some confidence in our understanding of this reaction mechanism.

We proceed to apply this multiple-scattering analysis to elastic proton-nucleus scat-
tering at high energy. The scattering amplitude in Glauber’s approximation is given by

F(q) = —% J e r(p)d®s. (5.21)

Here g is the momentum transfer
hg = hik,— k) (5.22)
and b is the impact parameter. All the nuclear physics is contained in the nuclear profile

function which is given (neglecting Coulomb effects) as an integral over the nucleon co-
ordinates

I) = j'(p;(xh ey Xq) {1-—- '1.:.‘[1 [l-—‘yj(b—sj)]}é(3)(x—A'1 kglxk)

X DXy, .oy X)dx; ... dx,. (5.23)
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The elementary profile functions are just the two-dimensional Fourier transforms of the
elementary nucleon-nucleon amplitudes f;(q)

2nik

The vector s; denotes the projection of the nuclear coordinate x; onto the plane perpendicu-
lar to the incident direction. In general, the delta function in Eq. (5.23) must be included
in the definition of the nuclear density in Eq. (2.1) to ensure that we are properly dealing
with 34-3 independent internal coordinates and to provide a correct treatment of the
motion of the center-of-mass of the nucleus [5]. If the ground state of the nucleus is well
described by harmonic oscillator wavefunctions, however, we can dispose of the delta
function in Eq. (5.23) by multiplying the amplitudes by the center-of-mass correction factor
Jem(q) = exp [q%/4A44%] where a~! is the harmonic oscillator parameter. This should be
a good approximation for light and medium weight nuclei, whereas for heavy nuclei,
Jfem(q) rapidly approaches unit value and can thus be neglected. A more extensive discussion
of the correct treatment of center-of-mass motion in defining and relating nuclear densities
is contained in Ref. [S].

The nuclear profile function I'(d) can be expanded in terms of products of elementary
profile functions y;(b—s;)

I'(b) = (P, ZVj(b—sj)— _Zk ')’j(b—sj))’k(b_sk)

1 .
y(b—s) = —— je"""b_”)fj(q)d(z)q. (5.24)

+ Z l'Yj(b"Sj)?k(b—sk)%(b—sz)— o [ Do), (5.25)

J<k<

and since the nucleus consists of 4 identical nucleons, we have

. A(A-1)
I'(b) = {Po|Ay,(d—s,)— 2

P1(b—5)y2(b—53)

A(A—1) (4-2)
+ ————"——— (b —5)72(b—5,)y3(b—53)— ... |Pp). (5.26)

The first term in this multiple scattering expansion describes single scattering, or the impulse
approximation. In general the y;(b-—s;) are operators in spin and isospin space, but we
assume here for simplicity that we can deal with a spin and isospin averaged nucleon-
-nucleon amplitude

f{a) = aoq) = age™ (5.27)
with
iko,
dp = —= (1—ip). (5.28)
3n
The parameters in «g have been assumed to take the values o, = 43.6 mb, o = —.252,

and a = .102 fm? [25]. The inclusion of spin and isospin dependences of the elementary
amplitude is straightforward, and is presented, for example, in Ref. [25]
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We now apply this formalism to elastic p-'2C and p-'°O scattering. The form factor
of 12C can be well represented [26] by

0 g) = (1—cq?e ™ (5.29)

with ¢ = .296 fm? and d = .681 fm?. For 150 we get a reasonable fit to the form factor
(except for the second minimum [26]) with ¢ = .410 fm? and d = .819 fm?. This form
factor has to be corrected for the finite size of the proton’s charge distribution and center-
-of-mass motion. This can be done approximately, within the harmonic-oscillator frame-
work, by replacing d with d where

- A
d={d-3) 173 (5.30

where the root-mean-square radius of the proton is (rﬁ)“z = .8 fm. The corresponding
density is

o) = go(1 +pxM)e™"™ (5.31)
with
e o YL R Yy (5.32)
0= 3 U T ad(—3cpdy T ‘

Thus, we can immediately write down the proton-nucleus single-scattering amplitude
Fy(q) = ag(1—cq?e” @+ (5.33)

and the corresponding single-scattering profile function

rb) = -2 (1_") d bz]‘a‘wii?) 5.34
i )"2ik(d+a)[ d+a +(d+a)4(d+a) ) ’ 39

2. No correlations

We first consider multiple-scattering for uncorrelated target nucleons, retaining just
the first term in Eq. (2.8). Then the profile function for double scattering is given by the
square of I'y(d)

ry) = [I®7 (5.35)
and the corresponding amplitude by
.2 2 2 (a+d)
iog 1 c c c , ¢ | - !
F = - — 1- - — 2 %, (5.36
{2 k 4(d+a)[ ard Havay 297161 ]e (5-36)

In general, the n™-order profile function with uncorrelated target particles is

nb?

I = [F®7T = [2,7(0(;:1)] Z b0 D (537)
y=0



51

("o Y (Y 5.38
"“’v‘(v)(‘m) (Z(aw)' (5-38)

For the n'™-order scattering term we have

with

2ik(a+d) %o " o =0t
Filq) = o 5.3
(4) [m(a Td) pq")e (5.39)
Here p,(q?) denotes a polynomial of order » in ¢
Piah) = X @)’ (5.40)

with the coefficients

Pa = [- (“m]v Z o [w](o) (o—)!
n n v

e=v

n—v

_nf_ @ N1 e XN e [T (n-n
“vT[ n ]Zu!(l a+d) [n(a+d)] (v ) G4

r=0

The multiple scattering amplitude for elastic scattering corrected for center-of-mass

motion is
A
Lo 4 +1
F(g) = e“ E <n>(—1)" F(g). (542)

n=1

For d = 1/40%, ¢ = 0, a = B¥2, and A = 4 we get

4

— ifg2/16a% 1422732 (4)(—1)""H oa’(1—ig) ]m
F(q) = ike / (—-—20‘2 )Z m m [27:(1_*_2&232)

m=

142 2p2
X exp [— (—+4—n—10—;7ﬁ—) qz] (5.43)

which is the result originally derived for *He by CzyZ and Le$niak [27].

3. Double scattering and correlations

We now want to calculate the double scattering term including correlations. The
contribution to the double-scattering term from the correlation part of the two-body
density in Eq. (2.10) can be written with the aid of Eqs (5.21), (5.24), (5.26) as

ik 5 i(a—qq~ . ~
F3"(q) = A A3 d-bdzﬁdzhe (@-aia)-b (q0f(4)C(q,, 92)- (5.44)
2n(2rik)



With the substitutions K = 1 (g, +4¢,), ¥ = (¢, —¢,) and the parametrization of the
elementary amplitude in Eqs (5.27) and (5.28) we obtain

iaz 2 — 2 >
F&(g) = — —2 e 490 | d2ge 2% CGE q+x,%q—K). (5.45)
2nk
If we write (cf. Eq. (5.20))
C(xy, xp) = 9(1)(x1)9(1)(x2) Le(lx; —x,))—1] (5.46)

and use Eq. (5.31), then after some algebra we arrive at the resuit

F$(g) = — ;,;m 5 ¢TI ST YY) (5.47)
where
p5e" = % (a+d)og(8rnd)**{goo(1+1547d* + 68d) + g20 5 B+ Pd) + g4o 5 B2},
P = —% (a+d)oi(8ndy**{2Bd* goo(1 4 58d) + g20 5 B2d* + g5, L f2d%,
p53" = 3 (a+d)og(8nd)*goopd?, (5.48)
and we have defined the parameters
g = 4 | ke ™ § &P [g() = 1] (D (5.49)

Thus we immediately arrive at the correlation correction to the double scattering profile

function
2

%o corr - a
cm‘r(b) 4k ( +d)2 [¢corr corrb2+¢ ] b2/2( +d) (550)
with
corr _ p ‘2:02" corr __ p 301" _ pg°2"
22 (a+d)4 ’ 21 (a+d)2 (a+d)3 s
corr corr
A LI S LI (5.51)

(a+4d) (a+d)*

4. Multiple scattering and correlations

The multiple scattering profile function can be easily calculated if we retain the first
two terms in the expansion (2.8), i.e. up through two-particle correlations in the ground-
-state density. We obtain

A

r() = Z (‘j) (—1)"* 1T () (5.52)

n=1
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and
[n/2]
I(b) = Z (2"’”> @m—-DU[T(B)] 2" [ (b)]" (5.53)
m=0
which is identical to the expression
[4/2]
) =1 4! [1=r,®) 2 re(h)]” (5.54
- (A=2m)!m12" ! 2 4
m=0

used by Moniz and Nixon [9]. It is evident that also in this case, we have a representation
for I',(b) identical to that given for I',(b) in Eqs (5.37), (5.39), (5.40), and (5.41) only with

new coefficients ¢, ,.

5. Numerical calculations

We have calculated p+!2C and p +*°0 elastic scattering in the no-correlation approxi-
mation and for three different choices of the correlation function: (i) Pauli correlations,
(ii) hard-core correlations, and (iii)) Moszkowski-Scott correlations. In Figs 12, 13, we
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Fig. 12. The contribution of different multiple scattering terms to elastic p+'?C scattering. The single
scattering term is compared to the form factor as measured in electron scattering [26]

show the contribution of the different multiple scattering terms to the total no-correlation
amplitude in p+'2C and p+!°0 respectively. Also shown is the experimental form factor
as measured with electron scattering by Sick and McCarthy [26]. Figures 14, 15 show the
effects of differcnt correlations on p+*2C (Fig. 14) and p+1°0 (Fig. 15) scattering. The
experimental data is from Refs [28-31]. There is little difference between the no-correlation
approximation and calculations involving two-body correlations in the nucleus. This
makes it extremely hard to determine correlations with high-energy proton-nucleus scatter-
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Fig. 13. The contribution of different multiple scattering terms to elastic p+1!°0 scattering. The single
scattering term is compared to the form factor as measured in electron scattering [26]
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Fig. 14. The effects of different correlations on elastic p +!2C scattering calculated using Egs (5.46), (5.52).
The experimental data is from Refs [28-31]

ing. It can also be seen in Figs 14, 15 that most of the correlation effects in the Moszkowski-
Scott case are very similar to the essentially uninteresting Pauli correlation, and in this
case it would be almost impossible to find a difference between Pauli and Moszkowski-
Scott correlations in an experiment. If the real correlations would be closer to hard-core
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correlations, there might be a better chance to detect them in this way. The major problem
in determining correlations in high-cnergy proton-nucleus scattering lies in the fact that
correlations are only corrections to the double and higher-order multiple scattering terms.

To see this let us look at Fig. 16 where we have plotted the structure functions p,(¢%)
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(Eq. (5.40)) as a function of g2 in the no-correlation approximation (n = 1, 2, 3, 4) and
P2(g?) for Pauli, hard-core, and Moszkowski-Scott correlations. The differences are very
small and it is very doubtful if it will ever be possible to determine short-range dynamical
correlations in this way. Furthermore, when we start discussing very small effects we must
go back and reexamine our basic understanding of the reaction mechanism to this level
and include spin effects, inelastic shadowing, target dynamics effects, etc.® In contrast to
inelastic sum rules, clastic scattering probes only integral properties of the correlation
function, and therefore the effects are just too small to identify unambiguously. These
conclusions that short-range two-body correlations give small effects here are similar
to those arrived at by Feshbach and coworkers [33], as well as others®.

6. Other possibilities

We would like to very briefly mention three selected topics that directly involve two-
-body densities and two-body correlations in nuclei.

A. Local field corrections

There are corrections to the multiple scattering expansions, or the optical potential,
for the scattering of hadrons from nuclear targets coming from processes where the incident
projectile is multiply reflected between target particles. This is not contained in the Glauber
analysis of the optical potential presented previously. An example of this is the Lorentz-
-Lorenz effect of Ericson in low-energy pion-nucleus scattering which has been examined
recently by Eisenberg et al. [35]. Keister [36] has shown that at high energy these local
field corrections to the optical potential, or corrections coming from multiple-struck
target particles, go away very rapidly with increasing energy because the particles are anti-
-correlated, or held apart. It is essential that the particles be held apart to have this local
field correction disappear. Here again we have an example of the anti-correlations in the
nucleus making nuclear physics simple and allowing us to describe high-energy scattering
in terms of the elementary projectile-target-particle amplitude and the one-body density.
Down in the resonance region the effects may be large [37, 38]. However, the uncertainty
in the actual scattering mechanism is probably sufficient to rule out the possibility of
learning anything about two-particle correlations in this fashion'®.

B. Lifetime for A+N - N+N

Another class of processes where correlations play an important role is non-leptonic
weak interactions. Since the Pauli principle forbids the ordinary decay A - N+x fora A4
at rest in nuclear matter, the predominant decay mechanism for a A is expected to be the

8 See, e.g., Ref. [32].

2 Compare Ref. [34].

10 Similar uncertainty about the reaction mechanism makes it unlikely that we get definitive information
on correlations in the near future from pion capture on nucleon pairs.
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collision decay A+N — N+ N. This is a weak interaction It may take place through
1 -7 exchange, and since one knows the couplings involved, the 1—n exchange contri-
bution can be computed Because of the anti-correlations between the baryons, one might
expect 1—r exchange to be the dominant mechanism and, in fact, one gets substantially
different reaction rates depending on the detailed nature of the correlation between the
baryons at small distances [39]. The lifetimes for these heavy /-nuclei have not been measured
yet, however, similar considerations, i.e., how are the weak interactions transmitted
between nucleons at small distances and what are the strong correlations at these distances,
are essential in estimating the degree of parity violation in nuclear physics introduced
by the non-leptonic weak interactions [40].

C. Coincidence experiments (e, e'x)

Finally, we will say just a few words about electron scattering coincidence experiments
with nuclear targets and nuclear correlations. deForest has looked at the process (e, e’N)
through the Coulomb interaction assuming a Fermi gas for the target with hard-core
correlations between the nucleons [41]. He works consistently to second order in the
dimensionsless parameter ¢. His idea, an extension of work by Czyz and Gottfried [42],
is that if one looks far enough away from the quasielastic pcak by varying both the energy
transfer and momentum transfer, one can get to kinematic regions where the major contribu-
tion to the double-differential cross section can only come from processes where nucleons
are in collision during the time of the electromagnetic interaction with the electron (See
also Ref. [43]). One interesting feature of his results is a large response for backward-
-scattered neutrons. It is difficult to see how one can get backward scattered neutrons in
competition with this, While amusing, it is not immediately possible to relate these
processes to the two-body density in nuclei as we have been able to with the previous ones
discussed' .

Finally, in our opinion, one of the most promising experiments to directly look at
two-nucleon correlations is the (e, e’2N) reaction. This involves a triple coincidence, but
by varying the energy and momentum transfer to the pair one should in principle be able
to map out the two-body wavefunction for the two target particles*?. It is difficult, and
it is complicated by the final state interaction of the nucleons, but it should provide a direct
handie on the two-body wavefunction Further analysis of this process, both theoretical
and experimental, is clearly called for.

7. Summary

In conclusion, we would like to reiterate that it can be argued that the short-range
anti-correlations between nucleons in nuclei and the short-range healing of the wave-
function to the unperturbed value are responsible for most of nuclear physics as we know
it. We can understand the saturation properties of nuclear matter in the independent-

1 The effects of correlations in photonuclear processes, including pion photo-prodaction, has been
recently analyzed in Ref. [44, 45].
2 This experiment was suggested by David Yu [46].
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-pair approximation; we can justify the independent-pair approximation and understand
the suppression of higher cluster contributions to the energy; we can understand the
validity and success of the single-particle shell model, even though the nucleon-nucleon
force is strong and short-range; we can understand why exchange currents are not important
in nuclei; we can understand why many-body forces are not important. If there could
be strong overlap of nucleons in nuclei, the situation could be entirely different. The
presence of another nucleon could profoundly modify the meson fields surrounding other
nucleons in the nucleus, and nuclei would not look like the relatively low-density collection
of non-interacting free particles that they do; we can also understand why the local-field
corrections and muitiply struck target particles are not important in high-energy scattering.

Because these effects take place at small relative distances and the nucleus is essentially
a low-density system, it is not easy to directly detect the effects of these short-range corre-
lations. Although the effects on the inelastic Coulomb sum rules are small, they should
be measured because this is the cleanest determination of the correlations!?. The effects
are larger in the inelastic sum rule for the scattering of high-energy nucleons or other
hadrons from nucleons. In particular, it should be possible to rule out large classes of not-
-unreasonable correlations between nucleons on the basis of such experiments. The most
promising experiment to look directly at correlations is probably the (e, ¢’2N) triple
coincidence experiment. Detailed analysis of this process, both theoretical and experimental
lies in the future. Finally, the relatively low mass of the pion and consequent low-energy
meson production may put a fundamental limitation on our ability to describe nuclei
in terms of elementary nucleons.

We are grateful to K. Hayes for checking the formulae in this paper.
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