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A method of practically solving of nuclear reaction problems on a single-particle
basis is proposed within the framework of the microscopic approach. The method ensures
the fulfilment of Pauli’s principle and translational invariance requirements.

The results of recent ““model” nuclear reaction calculations proceeding from a given
NN interaction (see e.g. Ref. [1]), lead perhaps to a conclusion that if the corresponding
“rigorous” calculations were performed in some cases satisfactory results would be obtained
without using an anrealistically great number of basis states. The difficulty in performing
such calculations is mainly in the typical “mixing” of NN force operators and of different-
-type fragment ¥-functions in the corresponding many-particle cluster matrix elements
(m.e.). This does not permit the variable separation in the m.e. Direct numerical integration
is practical only for 4 = 3 in the unrealistic case of purely static NN potentials. The
method of the calculation in Ref. [2] deals with the intrinsic (Jacobi) coordinates {{} and
therefore it could be efficient only for small 4; the methods in Refs {3, 4] involve uncontrol-
lable model-type approximations that are not in accordance with the initial idea of the
microscopic calculation. The method given below does not require such approximations.

Let @({&)}) be the ¥-function to be found in the reaction problem. Let us consider
the ‘“‘extended” ¥-function instead of ¢({¢}):

Y= ¢({‘§})XN=L=M=0(RC.M.A1/2/B)5 (D

where yyra are oscillator functions, Rc,, is the centre-of-mass coordinate, BJ/A!/2
is the oscillator radius. Instead of the initial equation (H—¢&)¢ = 0 in the {&}-subspace,
H being the intrinsic hamiltonian, we shall solve the equation (H—&)¥ = 0 in the whole
{r}-space and we shall seek for ¥ in the form

¥ = (Z Cy'dFy)Xooo(Rc.M.Allz/B) + ¥ e @)
7
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Here the coefficients ¢, correspond to the unknown reaction amplitudes, F, are cluster
functions of the type

y = (Ply({él?})q’zy({ézy})fy(gy)YLVMV@y)a 3)
where @, ,,2, are the intrinsic ¥-functions of the fragments participating in the reaction,
£, is their relative motion function, ¢, = RYy — Rl All the functions in Eq. (3) depend
on Jacobi coordinates but below we shall be able to avoid calculations with these coordinates.
& in Eq. (2) is the antisymmetrization operator, ¥, is a normalizable function. We
construct ¥,,. as an expansion

Proe = 2 cupul{re}) O

with y, being single-particle oscillator configurations. We retain in the expansion all
the configurations (with given J, T) of a shell. Then, as can be easily seen when using either
usual Hulthén-Kohn-type equations

Cp [H-6DP =0, (F,|[H-&1P> =0, (5)

or similar equations (cf. Ref. [2]) for obtaining unknown ¢, from Eq. (2) and ¢, from
Eq. (4), the resultant ¥, ., Eq. (4), will be in fact of the factorized form of Eq. (1) type;
so the required factorization of ¥, Eq. (1), will be exact. The factorized (“pure in the
centre-of-mass”) y, configuration combinations constructed beforehand in a familiar way
may be used as well.

For solving Eqgs (5) all we have to do in addition to boundstate-type calculations,
reducing mainly to the calculation of the two-particie m.e. of the type

§ dridrygi(r)es(r)V(12)g.(r)gd(rs), ©)
is to calculdte the m.e. with the cluster functions (3) of the type
<‘Pp[[H_ E1F, %000 (7a)
{HF, X000l [H—E1F,x000)- (7b)
We may write in Eqs (7)
[H—&]F,x000 = i}ivaXOOO +F7X000’ (8)

where V;,, is the inter-cluster NN interaction sum, F y = (Trea— &€ ,)F,. The function F ’
corresponds to replacing f,(¢,) from F, by some localized f,(¢,). Further, as it is
discussed in Refs [2, 3] in the framework of quite different approaches, we may replace
relative motion functions by the finite sums of the oscillator functions after putting (8)
into (7).} Let us do it by using (A/A,,,Azy)” 2B (A,,, 2, are the fragment nucleon numbers)
as an oscillator radius in the corresponding expansions:

1, ey) YLyMy(éy) - % CJ{’XNLyMy(ey(A l'yAZy/ A)/B) ®

! It is useful to make beforhand a cutting of the functions f,, f;- at distances greater than the fragment
interaction region [2]. Below without changing notation we may consider it fulfilled.
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and the same for f,, f,. The coordinates Rcpm 42, 0,(4,,4,,/4)"/? are related to the
fragment center-of-mass coordinates R¢hy 417, R¥y A}3}? by means of an orthogonal trans-

formation. Making use of it we transform the oscillator function products:

XOOO(RC.M.AI/2/'B)XNLva(Qy(A1yA2y/ A)'*|B) = Z (=D
2n +1i+ 203+ =2N+L,
X <n111n212iOONLy>I‘fy[x"1ltm1(Ré.yM‘AiQZ/B)anlzmz(R(zf?M.A;4’2/B)]LVMV' (10)
Here (...1...){, are the generalized oscillator brackets of a quite simple special type (see
e.g. [5]). But the products of the type
q)l7({61y})anhml(RlyAiéz/B)’ q)2y({ézv})anlzmz(RZVA;QZ/B) (11)

just can be simply expressed in the single-particle form by means of their expansions of
the type

z C,;("Jx’"l)'l’;:({"k'})» Z Cu(”zlz’”z)Wu({’k“})- (12)

Indeed, for n = [ = m = 0 case they (i.e. ¢,(000)) can be found by solving bound-state
problems with a usual pure in the centre-of-mass oscillator-configuration-combination
basis. The remaining functions (12) can be obtained from c¢,(000) with the help of the
following recurrence:

c,(0lm) = 171/ Eo:il Clmt=tm-m 2 {Pultim| W€ (0 1=1m—m’)  (132)
m =0, I’y

and then with given [:

e, (nlm) = —[2n(2n+21+1)]7"/? Z P lpee(n—1m). (13b)

Here n = 2-'2(x—0/0x) are the creation operators in the centre-of-mass variables
(x; = RZ\.A}]*[B). For calculating the m.e. (13) we shall use the relations

A
p=A4"1"Y% a; a =2""¥B 'r,—Boor);

ad—-A"" Y (a;—a) (14)

1 1gk<j<d

so in every step of the recurrence one must calculate only single and two-particle m.e.
As it is seen from Eqs (14) only y,. contiguous to y, contribute to the sums over u’ in
Eqgs (13).

All the P-functions in the m.e. (7) are now reduced to the determinants y,({r})
and to the products v, ({r})¥,,({r}) of the fragment determinants. The quantities
Y, (P Dv,,({re-}) arising in (7b) are then obviously exactly as the determinants of the
type v, ({r}) so the m.e. (7b) is reduced to the sum of the m.e. (7a)>. The m.e. (7a)

2 Here there is some resemblance to calculations [6, 3] based on intrinsic functions dependent on
Jacobi coordinates.
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themselves are reduced to a m.e. sum of the type (if the nucleon with number 1 is assumed
to be in ¢,, and that with number 2 in ¢,,:

§dr, i ({r DV 2)p,, (1D pu{re)),

§do, i ({n) v {re Dy (e

The second m.e. is quite simpie and the first one also reduces directly to the ordinary two-
-particle m.e. (6). The generalization to orbitals different from the oscillator ones is also
possible.

A note concerning m.e. (7b) should also be made. These m.e. arise in the equations
with F,. from Eqgs (5). The way used above of calculating them means replacing yoo0F,
in (7b) by

[ZOOOFy’}uo = Z <%5X000F~,'>1l’u({'k})-
H<no
Note that in addition to this, it is useful to make the replacement in every m.e. in the
equations. That means to replace the equations by

<[XoooFy']uo| [H—ﬁ]@) = 0. 15

This procedure preserves the projectional character of the equations and consequently
the results would not be sensitive to the difference between yxo00F, and [xoooFy ),
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