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DIFFRACTIVE DISSOCIATION AND MULTIPLICITY
DISTRIBUTION IN AN UNCORRELATED CLUSTER EMISSION
MODEL

By J. STERN*
Institute of Theoretical Physics, Katholieke Universiteit Leuven**
( Received August 16, 1976)

Using an uncorrelated cluster emission model with a superposition of coherent states
to describe non-diffractive processes, the diffractive production is estimated by means of
shadow calculations, the results of which are shown to be linear as regards the probability
distributions. The model describes fairly well the absolute magnitudes of cross-sections as
well as the multiplicity distribution.

It is generally admitted (see e. g. Biatas and Kotanski’s model [1]) that the diffractive
production may be calculated from non-diffractive production amplitudes by means of
the unitarity condition. Assuming that the non-diffractive production is described by the
uncorrelated cluster emission model [2, 3], the high energy limit of diffractive cross-sec-
tions was obtained [4] through the formulae of Ref. [1] and by using de Groot’s method [5].
Following the assumption that the clusters decay isotropically into 3 pions, numerical
estimates for proton-proton collisions [6] showed that the model describes fairly well the
absolute magnitude and the general behaviour of the diffractive cross-section. However,
for the multiplicity distribution obtained within a two-component scheme (see €. g. Ref. [7]),
the model fails badly. This was suggested to be due mainly to the fact that the model does
not give a true description of the non-diffractive production.

In this paper we show that the discrepancy found earlier may indeed be avoided by
taking as input a superposition of coherent states instead of just one of them. We follow
in this respect an idea of Benecke, Biatas and de Groot [8].

These authors have suggested that the observed cross-section should be represented
as a sum over a number of component cross-sections, each of them satisfying the uncor-
related cluster emission model. We assume this to be true for the non-diffractive produc-
tion.
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The observed cross-sections for the production of N clusters are then given by
oy = j dioR"(%), )

where oN"(4) are the cross-sections related to the different components. They are given
by [6]
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and where A describes the energy dependence of the average multiplicity of the emitted
clusters within the different components,

NYP(4) = Alns/p*—1. 4

Parameter 4, which is the lower bound of the integration over A, has to be greater than
zero as can be easily seen from the previous equation. Moreover in the above formulae,
s is the squared total c. m. energy of the system and I'(z) the gamma function, while g
is defined by

Ing = [d’q, In(Vg> +.4%)f(q,) (5)

where f(g ) is the normalized transverse momentum distribution of a cluster, .# its mass
and y Euler’s constant equal to 0.5772.

Further, to get the observed probability for producing N clusters non-diffractively,
we take a weighted average over the probabilities related to the different components.
So we obtain

o0
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as may be seen from equations (2) and (4).
In the same way, the observed average non-diffractive multiplicity is given by
. o O'ND( A) _
NP = Jd). s NYP(4). 6]
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We can also write this as

N = ZIns/a*—1, )
where we define # by
i = dAi di 10)
PG+ 013 ) AT+ D) (
A A

In order to obtain the peak-plateau structure of the leading particle spectrum, we take #
equal to 1 [8]. This gives us the value of 0.5160 for parameter 4.

This method that we used for non-diffractive production, is also applied to diffractive
production. But this procedure needs some justification.

We know from Ref. [1] that within the different components, shadow calculations
allow to deduce the diffractive production from the non-diffractive one. We know also
from Ref. [6] that within these different components, the diffractive probability shows
almost a Furry distribution [9] i. e.

(NN
PD /1 o e, 11
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where the average diffractive multiplicity at high energies is fairly well given by
N°(2) = 0.0241n s/u%+4.5, (12)

parameter u being defined by
(aidnj = {d?q, In(Vai +-42 )’ f(q,), (13)

where <qi > is the average squared transverse momentum of a cluster. Looking moreover
at equation (7), we see that the non-diffractive probability distribution is approximately
a Poisson. For simplicity we take it to be exactly so and the diffractive distribution to be
exactly a Furry. Now, the average multiplicities involved being the diffractive ones, it may
easily be shown that between both distributions following relation [10] within the different
components holds at high energies

PR3 = (_)f dm e”"PRP(im). (14)

In fact, this relation gives nothing but the effect of shadow calculations on the probability
distributions. We apply it to the observed non-diffractive probability distribution to ob-
tain the observed diffractive probability distribution. This gives us

PX(#) = jodm e""PN°(Am) (15)

and finally, with equations (6) and (14),

o0

P2(%) = J a ZG(T'D P2(A). (16)
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Here we used the fact that the weight factor ¢°(1)/¢” (obtained with formula (17) and
parameter values given below) is approximately equal to 6™(4)/6™P, as shown in Fig. 1.
Thus with equation (16) we proved that the procedure which was described for non-
diffractive production may also be applied to diffractive production.
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Fig. 1. Energy independent weight factor 6NP(2)/oNP and weight factor 62(4)/6® compared with Wréblewski's
compilation of experimental data [15] for the KNO scaling function y’(3)

Here the cross-sections for production of N clusters related to the different components
are given by [4]

amn

ox(A) = 0.(4)
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with
Q1) = Xg1> (In s/u® =292+ 1)+ 1/(Aaq? D)),
for N even, and by
oR(A) =0 8)
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for N odd. In formula (17), o.(A) is given by

ou(d) =

TG+ 1)}49 (A)/ J TG+ 1)]“9‘@) (19

(z) being the digamma function. Moreover, o equals to half of the slope of the elastic
cross-section, which we take equal to 12. As the overall magnitudes of cross-sections (17)
decrease rather rapidly with growing N, we sum them over the even N values up to 10
to obtain the total cross-sections ¢“(4).

In order to compare the multiplicity distribution predicted by the model with experi-
mental data we assume first an isotropic cluster decay into 3 pions, then some definite
transverse momentum distribution for the clusters. As earlier [6], we follow the suggestion
of Barshay and Chao [11] and take f(g,) in the form

__ B i

flg)) = 32T, fA) e , (20)
where I'(q, 2) is the incomplete gamma function and f§ a parameter which can be easily
determined when (qi) and .# are known. The last two parameters are not independent
from each other, as has been shown in Ref. [12] by using the same assumption about the
cluster decay. For the cluster mass .# we choose the value 1.3 GeV in agreement with
Ref. [2] where it was estimated that {(.#) is equal to 1.3 GeV when the clusters decay
on the average into 3 pions. As value of (g3 > we obtain then 0.3279 (GeV/c)?. This gives
us the value of 9.2922 for the slope B. We find also ji equal to 2.5141 and u equal to 2.7274.

Now, having determined all parameters, we can see how the model agrees with experi-
mental data. Absolute magnitudes of average multiplicities and cross-sections obtained
at high energies are fairly well given by the model. As these results are very similar to those
obtained earlier, we may refer to Ref. [6]. For the ratio ¢°/o,;, however, which in the limit
s — oo is predicted by the model to be one, the experimentally observed value {13], we
note that it is very sensitive to the cluster mass. It decreases rather rapidly with in-
creasing /4.

Since we have the explicit formulae for the observed diffractive and non-diffractive
production, it is useful to look at the multiplicity distribution, more precisely at the KNO
scaling function [14], for which discrepancies were found in the earlier version of the model
[6]. Therefore we use a two-component scheme as was suggested e. g. by Fialkowski and
Miettinen [7]. This gives for the average total cluster multiplicity

N = oN°+(1-0)N™P, @1
where
¢ = "oy, (22)

Further, we use the fact that with our assumptions about the cluster decay the same scaling
function describes cluster production and particle production. So we obtain, using Wré-
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blewski’s parametrization [15], the following equation for the KNO scaling function related
to cluster production

D D
y'(z) = (N+0.5) o+ ok , (23)

in

where
2" = (N+0.5)/(N +0.5). (24)
In Fig. 2 we have plotted the function ' versus z’ and compared to the data as compiled

by Wrdéblewski. Because of the peculiar fact that for N odd o% is equal to zero, we took the
arithmetic average of the separate curves for N odd and for N even at a given energy.
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Fig. 2. KNO scaling function ¢’(z") compared with experimental data [15]

We see that the agreement is fairly good, both for the shape of the curve and for its scaling
property.

If we limit ourselves to non-diffractive production, we obtain, as shown in Fig: 3,
a scaling function ynp(z’) which seems to be a rather good approximation to the experi-
mental data [15]. Moreover, it is in fair agreement with the formula which was derived
by de Groot [16] from a unitary uncorrelated cluster model [17]. That formula, however,
includes some more parameters.
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Let us finally look again at Fig. 1 where we plotted the weight factor a"°(1)/6™P. By
comparison of it with the experimentally obtained data for the scaling function y’(4) {15],
we see that it is quite different. This fact is in disagreement with the predictions of Ref. [8],
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Fig. 3. KNO scaling function ynp(z’) compared with experimental data [15] for y’(z’) and with de Groot’s
fit [16]

which, however, were derived in the KNO limit, in which case the non-diffractive Poisson
distributions become delta-functions.

Thus, comparing the results obtained earlier [6] with those we got here from confron-
tation of the multiplicity distribution with experimental data, we can say that clearly
a superposition of coherent states should be used as the input when building up a model
for multiparticle production.

To conclude, we would like to make some comments. The model of Bialas and Ko-
tanski that we used, in which diffractive dissociation is generated as a shadow of non-
-diffractive interactions, gives a correct description of the diffractive production. This is
true when for the non-diffractive production an uncorrelated cluster emission model is
used, where a superposition of coherent states is taken instead of just one coherent state.
The relation which exists then between diffractive and non-diffractive production as
regards the probability distributions appears to be linear. The use of non-diffractive
production only seems to be already a good approximation to describe the observed
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phenomena. The addition of diffractive production, within a two-component scheme,
agrees fairly well with experiment.

Summarizing, we may say that an uncorrelated cluster emission model where superposed
coherent states are used, describes correctly both the non-diffractive production and
as its shadow, the diffractive production.

I would like to thank Dr A. Biatas and Dr E. H. de Groot for helpful discussions.
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