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The magnetic moments of the charmed vector bosons and those of the usual ones have
been compared assuming that the magnetic moment operator transforms as the (15,3)
component of SU(8) symmetry. If the y-particle can be identified as cc, the charmed quark-
-antiquark state, then we find u(y) = 4u(p°).

It is the purpose of this note to report on the consequences of assuming SU(8) symmetry
for the ratios of (/) the magnetic moments of the vector mesons including the charmed
particles, (i) the transition moments between vector and pseudoscalar mesons. As proposed
by several authors [1], if we consider the v particle to be cc combination of the charmed
quark c and antiquark c, the magnetic moment of y can be compared with that of o®-meson.

Starting with SU(4) symmetry [2, 3], we assume that the mesons are obtained by the
quark-antiquark combination qq and that they belong to the 1+ 15-multiplet represen-
tation. We have to introduce here eight more charmed particles®, for both pseundoscalar
and vector mesons. In order to incorporate the spin of the particles, we enlarge the symmetry
group to SU(8) [4]. The quark-antiquark combination in terms of the SU(4)xSU(2)
characterization, can be expressed as

Since the 63-representation is associated with Young’s tableau [2111111], we can represent
the particles in the 63-multiplet with a tensor By scpercya, Where 4 = (@, ), B = (B, b)
etc. The Greek alphabet is used for SU(4) and the Latin one for SU(2) labels. Hence
o-s run from 1 through 4, whereas a—s from 1 to 2. The tensor B is antisymmetric with
respect to the simultaneous interchange of the indices within the curly bracket. We can,
however, rewrite B in terms of a mixed tensor as follows:

1
B uscperayn = ﬁ e4ncoerck® )
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! For exact nomenclature of these particles see reference [3]. We follow their identification.
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where &,pcpergy 1S the Levi-Civita tensor in eight dimensions. For #4 we can put
A x 1 .3
By = Vixa+ ;EP gEabXo- 3)

In expression (3) ¥ stands for the multiplet 1415 vector mesons and P stands for the
pseudoscalar mesons. They are given by the following 4 x4 matrices [3]:

Vi = \/2(w+e) e’ K*™ D*°
o~ (w—0% K*° D*~
) \/2 4)
K*~ K*° ¢ F*”
LD"‘0 D** F** Y
J
and
[ .0 0 N
X 7 n e + + =0
P, = — K D
N RN NE
7[0 nO
n” 4 — K® D™
2 \/6 2\/3 ©
K- %0 2 F-
J" 2\/3
3
D° p* F* - —\g— e

In the expression (2), x,, are the wavefunctions with intrinsic spin one and are given by
1
11 = Ui Y12 = J21 = :/’5”0, K22 = Uy, ©)

where u;’s are assumed to be normalized to one. On the other hand y, stands for
a state of spin zero particle and also is normalized to one.
The most general current, that we can form out of B and B, can now be written as [5]

IV = 1 B B+ 1, BB 5+ 800" (BB @)
The tracelessness of J4', gives us
B+ gy = 8g. ®

We would notice in the following that the term involving g, in equation (7) would not
appear in the magnetic moment tensor at all.
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Following Bég, Lee and Pais [6], we assume that the magnetic moment in the low
frequency limit transforms as the (15, 3) component of a tensor (see also [5]). We can
write

M= MOJA’Agaa' ) ﬁQaa” (9)

where 7 is the vector g x¢. The vector ¢ is the momentum of the bosons and ¢ is the

polarization vector of electromagnetic waves perpendicular to g. The operator Q is the

diagonal charge operator: Q% = ¢,0%., with ¢, =g, =% and ¢, = ¢; = —4.
Substituting (7) in (9) we get

M = M(VV)+M(PP)+M(VP)+ M(PV), (10)
where
M(VV) = pon - o1 [V Ve o+ (Y V)™ 1 Q% (10a)
M(PP) = 0, (10b)
_ | - o
M(VP) = ‘/5 Ilo” . <XIGXO> [#x(VPF)aa+Ily(VPD)1 a]Qaa’ (IOC)
hY
and
_ | SO o o
M(PV) = —= pon - {3o0x1> [HAPVEY o+ 1, (PVp)* 10" (10d)

V2

In expressions (10a), (10c) and (10d), the abbreviation (VV,)*, stands for the F-current
and (VV,)¥, for the D-current without the trace term. We have also set

e = E{uy—p2),  py = 3+ u), (10e)
<)_(;X>x = iabgaded (10f)

and
<7?ng0> = )?ababdsadlo- (10g)

Defining p(X) = (X;J =1, J, = I|M{X;J = 1,J, = 1D, we find from (10a) that for
the vector mesons the following relations hold:

ww) = p(e®.= —iu(@) = Iu(D*®) = —3u(K*) = —1u(K*°)
= 1u(D*®) = fu(y) = ponsp, (I1a)

u(e®) = u(D**) = u(K**) = p(F**) = § pons(—3p, +pt,) (11b)
and

o) = w(K*7) = u(D*") = p(F*7) "= ¥ pony3pc+u,) (11c)
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V—V transition moment is defined as {(XulY) =<KX;J=1J, = 1l|M|Y;
1,7, = l)

o

Th
J=
{wlp|e®) = {°lulwd> = 3u(c®). (11d)

For P—V transitions, we define {X|u|¥Y) =(X;J=1J, =0M|Y;J=0,J, =0
where X is a vector and Y is a pseudoscalar meson. Using (10c), we get for the nonvanishing
transition moments

1
BEW, {olp|n®y = — ://2 (olulny = —/3olulny = - 72 <o%luln®)

1
\/6 e lulmy = -7 < lulny = -2 \/2 {D*°|u|D%>

= Jz (B*pK® = 7 CK*ulK®) = 3 <@luiney

1 — _
W <D*°|uD%) = 2—:/—6- {plplney = % ponsp, (12a)

2
e luln™) = KF*7|ulF™) = (K*7ulK™) = (D*7[p|D™) = — 1/3-%"3(3ux+uy) (12b)

and
+ + + + + + + + \/i
o7 pln™> = D*7ulD7) = (K*"[u|K™ ) = (F*"|u|F" ) = — ‘3‘#0"3("3ﬂx+ﬂy)~ (120)

We notice from (10b) that the pseudoscalar mesons do not have any magnetic moment
and from (10d) that {(X|u|Y)> = (¥iulX>.

Thirring [7] has already calculated the magnetic moments of the vector mesons in
the SU(6) quark model. Our results coincide with his results for the known vector mesons
if we set u, = 0 and if we assume ponzp, = 1. Equation (11a) thus yields that all uncharged
vector mesons have magnetic moment zero. Hence the magnetic moment of the y particle
would then also become zero.

On the other hand, from the transition moments the imposition of the restriction
1y, = 0, our results totally agree with the results of the quark model calculation of Thirring
if we take \/2ponsp, as unity?.

We can reproduce the results obtained by Thirring as follows: Let us assume that the
vector mesons and the pseudoscalar mesons belong to different representations. Hence
in equation (7) u, and p, are the coefficients of the V) current whereas in VP current
terms for example we put constants u', and ', as the coefficients. Since the trace term

2 There is a sign anomaly of our results with that of Thirring. In equation (12b) and (12¢) <K*-ju|K~)>
and (K*+|u|K*)> are weighted negative in the results quoted by him.
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does not appear in the magnetic moment matrix element, we need not worry about
those terms at all. The above choice indicates that although we are calculating the moments
in SU(8) symmetry, we label the constants in (7) in terms of the SU(4) x SU(2) irreducible
representations. Thus in the equation (10c) we have to replace the constants by u} and y;,
which are different from p, and p, of equation (10a). Our results then coincide with that
of Thirring if we set u, = 0 and puonspu, = 1 for the vector mesons and for the transition
moments if we set p; = 0 and /2uensp, = 1.

We, however, see no justification for the above choice and claim our results to possess
more general validity.
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