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A relativistic generalization of the reduced mass is proposed. Using it, it is possible
to reduce approximately some relativistic two-body problems to the problem of a single
non-relativistic particle interacting with a fixed potential.

In the non-relativistic theory of two-body processes the concept of reduced mass
plays a very important role. Using it, it is possible to reduce two-body problems to the
simpler problems of one particle interacting with a fixed potential. It would be very helpful
(e.g. in nuclear physics) to have a similar device also for relativistic two-body problems.
Strictly speaking this cannot be done. We point out, however, that at least for electro-
magnetic interactions it is possible to use the single particle Schrodinger equation with
a suitably defined reduced mass and the ordinary non-relativistic potential to obtain very
good approximations to the exact results.

It has been proved by one of us [1] that the relative motion of two classical particles
interacting via a particular Lienard-Wiechert potential* can be described exactly by
a Hamiltonian, which to a very good approximation is simply the classical, single particle
Hamiltonian, but with changed parameters. The corresponding Schridinger equation is
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* One particle acts only as emitter and the other only as absorber; thus the first particle moves in
the advanced (retarded) Lienard-Wiechert potential of the second particle, and the second particle in the
retarded (advanced) potential of the first.
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Here x = x, —x, is the relative coordinate, the two one-particle coordinates x; and x,,
however, are evaluated at different times: |f, —#,;] = |x; —x,! and either always ¢;, > 1, or
always ¢, > t,. The process is described in the centre of mass frame and p is the momentum
conjugated to x. For large intraparticle distances, where V(x) is negligible, p reduces to
the momentum of particle 1, because the “centre of mass coordinate” has been chosen as
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where ¢; denotes the c.m.s. energy of particle / and /s = &, +¢,. Consequently, k? is the
square of the c.m.s. momentum of particle 1 calculated assuming no interaction
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The reduced mass
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Note that for slow particles both (3) and (4) reduce correctly to their nonrelativistic limits.
We will show now that equation (1) yields good values for the small angle scattering
cross-section for a pair of spinless particles interacting through the standard Coulomb
potential. The solution of Eq. (1) is known (cf. e.g. [2]) and yields the cross-section
do meZ,Z,\* . _, 0
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where o is the fine structure constant. This formula is valid here in spite of ¢, # t,, because
the particle momentum p has the same meaning in Eq. (1) and in its non-relativistic ana-
logue, and x is in both cases conjugated to p. The exact result for the differential cross-
-section of two scalar particles interacting through a Coulomb potential may be well
approximated by the one photon exchange contribution. A standard calculation (cf.

e.g. [3]) yields
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where v; is the c.m.s. velocity of particle i. This is to be compared with the formula obtained
by substituting the reduced mass (4) into expression (5)

do a2 1 2 .l o
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It is seen that expression (7) is not exact, but that it is a very good approximation if either
at least one of the particles is slow (v;v, < 1), or the scattering angle is small (sin? §/2 < 1).
In the general case the relative error introduced by using (7) instead of (6) is
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wiere g2 is the square of the momentum transfer. In most practical cases this is very
small and formula (7) may be safely used. We checked that formula (7) holds with an
accuracy to terms of order 82 also for the non-flip amplitudes in the scaftering of spin 1/2
particles. Equation (1) gives moreover a reasonable spectrum of bound states, provided
the squared energy of the ground state

So > mi+m3. &)

Our conclusions can be summarized as follows:

1. Equation (1) with the reduced mass (4) yields the correct cross-section for forward
Coulomb scattering of spinless particles. Conversely formula (4) is the only one, which
gives the correct forward scattering cross-section. In this sense it is the best possible formula
for the reduced mass.

2. For scattering angles different from zero the approximation deteriorates, though
numerically it remains satisfactory for most cases of practical interest. Since the reduced
mass should not depend on the scattering angle, this cannot be remedied by a redefinition
of the reduced mass. This discrepancy is not due to the terms omitted, when deriving
Eq. (1), because these terms are of order o? and do not contribute to the a® term in the
differential cross-section.

3. It is plausible that also processes other than electromagnetic could be treated along
similar lines i.e. by using a Schrédinger equation with the potential known from low
energy (non-relativistic) situations and substituting the reduced mass (4). As immediately
seen from the formulae of the eikonal approximation [2], in this approach energy inde-
pendent potentials would correspond to energy independent, non-zero cross-sections
at very high energies.
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