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High-energy bremsstrahlung and pair production in the Coulomb field are investi-
gated. The Cheng and Wu impact formula for the amplitude (obtained for a screened
potential) is evaluated in the limit when the screening is removed; it is compared then with
the high-energy limit of the amplitude calculated by Bethe and Maximon for the unscreen-
ed potential. The two limits are shown to be identical provided we calculate correctly
the no-screening limit of the Coulomb scattering amplitude. In Cheng and Wu paper
this calculation was wrong what led to double counting of the Bethe-Heitler amplitude
for pair creation.

1. Introduction

The processes of high energy electromagnetic bremsstrahlung and pair production
in the Coulomb field of a nucleus are of considerable practical interest and have been studied
theoretically for quite a long time.

Bethe and Heitler [1] were the first to obtain relativistic amplitudes for these reactions.
The Born approximation which they used is sufficiently accurate for light nuclei, i.e. when
Za < 1 (x = 1/137). For heavy elements one encounters deviations from the Bethe-Heitler
result by up to 109, caused by multiple photon exchange. For instance, for lead Zu is
as large as 0.6 and the Born approximation is no longer valid.

The next step was done in 1954 by Bethe and Maximon [2] (hereafter referred to as
BM). They investigated high-energy bremsstrahlung and pair production in the unscreened
field of a pointlike charge and were able to derive closed expressions for the amplitudes
and cross-sections, valid to the lowest order in « and to all orders in Za. This was achieved
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by using the exact {(in the high-energy limit) solutions of the Dirac equation in t he external
potential. The result of this calculation is valid for any Z« and for energies of all electrons
and/or positrons involved much higher than the electron mass, m.

More recently, Cheng and Wu (CW) carrying out their extensive program of studying
QED at high-energies obtained simple expressions for the bremsstrahlung and pair cre-
ation amplitudes [3] in the so-called impact picture [4] (see also [S, 6]). Their formulae
include the Coulomb interaction to all orders in Zd and can be used for screened potentials
as well, but otherwise have a more limited range of applicability than the BM result. They
are only valid in the limit where the incident energy w tends to infinity (in practice @ > m),
all longitudinal momenta being fixed fractions of @ and all transverse momenta being fixed
and much smaller than w, the transverse momentum transfer also satisfying |4, | > m?*/w.
The last restriction on the momentum transfer is a consequence of the singular nature of
the Coulomb interaction. Therefore the impact picture formulas cannot be used for calcu-
lations of the total cross-sections because integrated cross-sections acquire important con-
tributions from the almost forward direction, (4| ~ m*/w [12].

There exist then two completely different calculations of the bremsstrahlung and pair
production amplitudes. Still, no comparison of the CW results with those of BM appeared
in the literature so far, this being apparently hindered by the mathematical complexity
of the CW pair production amplitude, given in the form of a nontrivial integral® rather
than an explicit algebraic expression. Apart from obvious practical reasons, such a compar-
ison might have more general implications in establishing the validity of the impact picture
for the unscreened Coulomb potential. Let us now discuss the last point in some more detail.

Historically, the impact picture was derived by CW in the case of Delbriick scattering
in the wnscreened Coulomb potential [7). This calculation, however, was done in the
lowest order in Zu, i.e. taking into account two-photon exchange only. On the other hand, in
derivations of thc impact formula to all orders in the external potential [4]-[6] it has
always been assumed that the potential is of finite range. The reason for this restriction
becomes evident when one considers the physical intuition underlying the impact picture:
in the case of bremsstrahlung, for instance, one imagines the incident high-energy
electron fluctuating into a system of an electron and a photon. This virtual system can
then materialize by receiving a necessary momentum transfer from the external potential.
Alternatively, the incident electron can go off-mass-shell by absorbing some momentum
from the external potential and then decay into an electron and a photon.

To the lowest order in Zx and the lowest order in « this is, indeed, all that can happen.
To higher orders in Za, however, the incident electron could scatter off the external potential,
emit a photon, and then scatter again; such processes are not taken into account in the
impact picture. In fact, if the potential is of finite range, they do not contribute in the
high-energy limit. This can be most easily seen by using the Lorentz dilation argument:
since the life-time of the virtual state grows with the energy, there will be eventually only

a negligible probability of the photon emission just inside the finite region of interaction
with the potential.

! For simplicity we will refer to this limit as the “high-energy, fixed momentum transfer limit”.
2 Strictly speaking this integral, as it stands, is ill-defined and requires a regularization.
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For an unscreened infinite range potential this argument does not hold. One may then
consider a limit of an impact formula for a screened potential when the screening param-
eter, say, the “‘photon mass” x, tends to zero. This is how the results of Ref. [3] were
obtained. However, the limit k¥ — 0 is a nontrivial one and, indeed, as we will see, was
not evaluated correctly in Ref. [3]. Furthermore, it is a priori not known whether the
limits @ ~ o0 and k — 0 are interchangeable (the interchangeability has only been ex-
plicitly proved in the two-photon exchange Delbriick scattering).

In view of the above considerations it should be clear that the bremsstrahlung and
pair production processes offer a unique possibility of checking the validity of the above-
-mentioned limiting procedure » — 0. This can be done by comparing the impact picture
results with those of the BM approach, in which the infinite range of the potential is taken
into account right from the begining. Such a comparison is the objective of the present
paper3,

In the case of both bremsstrahlung (discussed in Section 2) and pair production
(Section 3) our strategy is the following:

(A) We start with discussing the appropriate impact formula obtained for x > 0,
and take the limit « — 0.

(B) Then we turn to the BM no-screening amplitude and take its high-energy, fixed
momentum transfer limit.

What we find is that, indeed, both limits give the same answer. Nevertheless, we find
that only the bremsstrahlung amplitude obtained in (B) agrees with that arrived at by
CW [3]; their pair production amplitude, on the other hand, differs from ours. The
difference lies, as we show, in a misinterpretation of the factor

S*(q,) = Famvi(g}) ' F",
(with v = Zu) appearing in the impact formula. Contrary to the commonly made conjecture
{5, 3] this expression, when appropriately regularized, should be interpreted as the
S-matrix and not T-matrix element for positron or electron Coulomb scattering in the
eikonal approximation*. This misinterpretation led Cheng and Wu to double counting
of the Bethe-Heitler amplitude for pair creation.

2. Bremsstrahlung
2A. No-screening limit of the impact formula

The amplitude of the bremsstrahlung process is given (when radiative corrections are
neglected) by a set of Feynman diagrams of Fig. 1, where the crosses denote interactions
with the external potential. The sum runs over all possible numbers of interactions
before and after the emission of the photon. In the case of the screened Coulomb potential

VA
Vi(r) = 2L e ™, 2.1
4nr

3 A preliminary version of this work appeared as a preprint TPJU-5/1974.
4 This result was anticipated in the special case of production of an ete~ pair with zero relative
momentum [8].
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with each cross there is associated a factor —ie*Zyy(g%+«2)~!, where x is the screening
parameter (the “photon mass”) and g is the three-momentum transfer in a static potential
(the zeroth component of the four-momentum is conserved).

Let us sketch now how the high-energy impact formula can be obtained in our partic-
ular case. Consider the high-energy, fixed momentum transfer limit (see the first footnote

(e”)

Fig. 1. The Feynman diagrams for the bremsstrahlung amplitude

in the Introduction). It is easy to check that in this limit, taken with ¥ = const # 0, only
those diagrams survive in which all the interactions with the potential take place either
before or after the emission of the photon (this follows from considering singularities
in the appropriate integrals over g,, the longitudinal momentum transfer). In this way
the sum of Fig. 1 reduces to that of Fig. 2, where the heavy dots denote the multiple inter-
action with the potential. When in the diagrams of this figure the eikonal approximation

k k

Py . Pr
4 P2 > Po

Fig. 2. The impact diagrams for Bremsstrahlung. The momenta are parametrized: p, = (0, w),
Pz = (—k;+4,, A-w+4y), k= (k, flw+4,)

is made in the electron propagation between successive scatterings, one arrives at the
“impact picture” formula [3]°

1
M (K, 0) = =200 - I (r,,p,)S (4,), 2.2)
e

where r, =14, ,4 = p,+k—p,, p=3%(k—p,) and where the normalization conventions
of Ref. [3] have been adopted. The remaining parameters are defined in Fig. 2. In the
“impact factor”, given according to [3], by

(5 el

1
For , p,) = lim <~ 2_(”) eB(1—B)

?j(i’l +4+m)y, Yo(P2 —2+m)3’j ]u(p ) 2.3)
1/ M

xu(pa) [(ki —BA +m*B (1—P) (K2 +m?p?)

5 For simplicity of notation in writing the amplitudes we omit the fixed arguments p, |, p> |, k, and 8.
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the two terms in the square bracket correspond to the two terms of Fig. 2. The index j
in y; denotes the emitted photon polarization and a = a - y. Finally, the quantity

S“i(ql) _ j deLe—iq‘ -xle:;: ZfVXo(x{x;l)‘ (2.4)

is the non-spin-flip S-matrix element for the e*-Coulomb scattering in the eikonal
approximation (here K, is the modified Bessel function [9]).

Following the original derivation by Cheng and Wu we take now the limit « — 0.
According to Refs [4, 5] for any ¢, # O there exists the limit

lilgl+ e*®MSS(g,) = S*(qy), (2.5)
qL#0
where®
S*(g,) = Fi —amrer, @.6)
(4)
and
P(x) = 2vIn (Cr)+2 Arg I'(1 +1iv), 2.7

with C = €’, y = 0.5772 being the Euler constant. It is seen thus that for x — 0 the only
k-dependence is contained in a phase factor. Cheng and Wu have omitted this “infinite
phase” and arrived at the formula (in our notation)

1 -
AENW) = —2iw % FoNr ,p,)S™(4)). 2.8)

The result obtained by keeping all the phase factors is then related to theirs by

MEH () = lim P M5 (k, w). 2.9
x—+0+
4, #0

2B. High-energy limit of the unscreened case

Our next task will be to show that (2.8) is also the high-energy, fixed momentum
transfer limit of the amplitude for the unscreened potential. In this case the Feynman
diagrams of Fig. 1 can effectively be summed up by solving the Dirac equation in the
external potential Vy(r) (i.e. with k = 0). The solutions of this equation are well known
and-their approximate forms (for large angular momentum) are relatively simple [10, 2].
For instance, the wave function of the incoming electron of momentum p; is in this
approximation given by’

pi(x) = Nyt * (1 - 2-EL o Vx) F(x)u(p,), (2.10)

1

¢ Our S*(g ) is related to the amplitudes in Ref. [3] by S¥(g ) = tieV (q,).
7 To simplify the notation we approximate the velocities of the electrons by 1.



342

arnd that of the outgoing electron by
—ipy-x i
yh(x) = N3e™7 (1— JE Vx) F3x)ut(py),
2

where F; ard F, are confluent hypergecmetric functions,
Fy(x) = (Fi(iv, 1;ip,|x|—ips * x),
F3(x) = (Fy(iv, 1; ips|x| +ips - x),
and
N, = N, = I'(1—iv)e™’?,
are the normalization constants. The amplitude

178(w) = [ d*xy} (x)y,e”* “yy(x),

(with “NS’ standing for “‘no screening’’) now can be cast in the form [2]

v
AR5 (@) = e
sinh ny

where

I, = lim {d’xe” % *IF3F,

A0+
I, = lh? ——— { d?xe” 4 ¥ XIFR(V F ),
-0+ 1
I = ,11’?+ :E dPxe” M xe (Y FARVF,
- 2

eu(py) [, +v5v07 - Li+y - Lyoy;Ju(py),

(2.11)

(2.12)

2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(the factor e “*I*! is introduced here in order to regularize the integrals). Since the integrals
(2.16) and (2.17) are also explicitly evaluated in Ref. {2] it is only a question of algebra
to find a relation between the amplitudes (2.9) and (2.15). For instance, in our high-energy,

fixed momentum transfer limit the integral /, takes the form

sinh v o N
Il o _2'471")-.11 n e-xv(h‘p!pz)—l\(d.‘ )—l+n <£1_
y = Dl
where
k. —B8A4 2+ 202
D1=-AZ--2P1'A_~:(l pd) +m’p ,
B —p)
and
K ~1~m2/32

Dy = —A*4+2p, 4 ~ — = 5
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Using a high-energy approximation E; >~ p; and spinor identities

2Eu(p;) = (py py +m)you(py), 2E;ii(p,) = i(p,)yo(Ps +m),

we can write the term in (2.15) proportional to I, as

YAP1+m)yo
(ky —p4, ) +mp?
_ }’0(132'*‘??3)}’; ] (;71)
(1-B) (K7 +m?B%) '
This is, up to a phase factor, a part of the formula (2.9). The remaining piece comes from
the I, and I; terms, as can be readily checked knowing that [2]

~Ze*B(1 - B) (4p;p2)” (4] )”””u(Pz)[

v nh L4 iv - iv __FA
I3 o 4nve” (4p,p2)~ (A ) 1 (——-&),
nv D, ,

where the minus sign refers to I, and plus to I;. Finally we obtain the relation

MAEN(w) = lim — [4w2(1 — B M35 (). (2.19)
w0 W
4, +#0
The unobservable overall phase factor here results from an arbitrariness of the phase
of the Coulomb wave function.

The numerical identity of the limits of Eq. (2.2) and (2.15) might have been expected
on the grounds that, as noted by BM as well as CW, their amplitudes including multi-
-photon exchange differ from the first order Born amplitude by an irrelevant phase factor
only; the Born approximation itself is obviously the same in both limits considered.

This agreement is, however, not at all obvious when we realize that two different
sets of Feynman diagrams are summed up in .#p and .#ys. As we have mentioned above,
to .# ys contribute all the Feynman diagrams of Fig. 1, whereas to ;, only those of Fig. 2.
This means that in the impact picture the electron scattering occurs always either bzfore or
after emitting the photon. It may, therefore, be interesting to note that in the amplitude 4y
one can also find a specific manifestation of this phenomenon. Namely, it turns out that
in the fixed A high-energy limit .#ys splits into a sum of two terms: in the first term the
electron scatters with a finite momentum transfer (=~ 4,) before emiting the photon,
and after the emission it undergoes only an almost forward scattering with an
infinitesimally small momentum transfer; and in the second term vice versa. Thus these
two terms correspond, in some sense, to the two terms in the impact picture (Fig. 2).

To formulate this statement more precisely, let us rewrite the amplitude .#p in the
momentum space. In order to simplify the algebra, we shall only consider the term pro-
portional to the integral I,; the remaining terms can be treated along exactly the same
lines. Thus we have

I, = lim n)"* [ d’q,d*q,6°%(d— q,— 4,)F3(4)F (4., (2.20)

A+0+
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where
Fi(g) = [ d*xe™ "0 " I (x), (2.21)

and similarly for F;(g). In Eq. (2.20) ¢, and ¢, are the net momentum transfers received
(in multiple interaction with the potential) by the electron before and after emitting the
photon. Let us then choose, for transverse momenta fixed and w ~» o0, a small number &,
such that m*/o < & < |4, |, and write the integral I; as a sum of three terms,

I = IO+ 1P 419, (2.22)

where the g -integration in I{? is restricted to |g;,| < ¢ It can be shown now (see
Appendix A) that in the limit @ — o0, 4, fixed, the term /{* is negligible in comparison
with the two next terms (its modulus tends to a constant, whereas the whole sum 7, grows
linearly with w). This means that, indeed, the main contributions to bremsstrahlung in
the unscreened field come from the processes with a very small momentum transfer ¢, after
the photon emission (term I{?) or with a very small momentum transfer ¢, before the
photon emission (term I{®).

3. Pair production
3A. No-screening limit of the impact formula

The Feynman diagrams contributing to the pair production in the static external
potential are given in Fig. 3, where notation is also explained. In the high-energy, fixed
momentum transfer limit, using e.g. the rules of Ref. {4}, one arrives at the impact formula
{3] (see Fig. 4)

- 1 ee
‘llg‘;ee(x’ (1)) = tco(2n) 2 JdZQL Zf fy' (r_]_ 2Py qJ_)

x{S5(r. +q)S (r, —q,)—Qn)*6%(r, +q,)6(r, —q,)} G.1)
Py
k rq
2
n,l /‘-q
P>
Fig. 3 Fig. 4

Fig. 3. The Feynman diagrams for the pair production amplitude
Fig. 4. The impact diagram for pair production. The momenta are parametrized: k = (0], w),
pi = (pig, flo+4z)) 1= 1,2), with 48, = 1

where, according to [3],

. — 1 s A
IV, Py, q,) = lim (—eu(p,) [zﬁlﬂz}’j‘l' PN Bayvivo(r, +4q,)

W~ o0

1 ..
+— B(r, —q J,)vovj] vp)[(p —q,)+m*]7, (3.2
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where 2r, = A4, = p, +p, —k P, =3P —P2,), and 57 are the eikonal S-matrix
elements (2.4) for e scattering in the screened potential.

Consider now the limit ¥ — 0. As mentioned in Section 2 the x — 0 limit of SF(g,)
for any ¢, # O is given, after extracting a phase factor, by SE(g 1)» Eg. (2.6). However,
in the formula (3.1) above, there is an integration over all values of ¢, and therefore we
must know what is the behaviour of the x — 0 limit when ¢, — O (note that the conver-
gence of S,,i(ql) to S*(g,) is not uniform in ¢ ).

In particular Cheng and Wu [4, 3] interpreted S*(g ;) for all g, ’s as the amplitude
and conjectured implicitly that the limit of the S-matrix element Si is given by

lim eF®®Sk(g,) = (2n)°6%(g,)+5*(a,),

x>0+

(indeed, in the lowest order in v, S*(g 1) reduces to the Born amplitude). In this way they

have been led to the following expression (in our notation) for the pair production ampli-
tude 3]

- 1 ee,
My () = io(2r) 2 J.dz‘h_ ?jy’ (r_L‘p_]_7 q_L)

x{[@n)*8*(r +q)+5"(r +4 )] [@n)*6*(r —q,)+5(r, ~q)]

—(Zn)"éz(rl + ql)éz(rl -q,)} 3.3)
The integral in this formula is, in fact, divergent unless somehow regularized. In similar

cases Cheng and Wu used implicitly a regularization equivalent to the following®:

9 1
MG (@) = lim io2r)™> | d*q, - I"*(r , P, 4,)
e~ 0+ e

X {[(zn)zéz(r_j_ + q_]_) + ‘§:(r_1_ + qJ_)] [(271)252(’_1_ - qJ_) +§;(r_[_ - q_j_)]

—Q2n)*6%(r, +4,)6%(r, —q )} 34)
where
SHg) = Tl .. (3.5)
(g)=""¢

Below we will show, however, that the ¥ — 0 limit of the amplitude (3.1) is not given
by the above expression. We obtain instead (for 4, # 0)

1
lim A5, ) = lim iw(2r) 2 J.dzqd,_ I, P, 4;)
N0 evor ¢

x{S}(r, +q,)S;(r, —q,)~@n)**(r, +q,)0*(r, —q,)}. (3.6)

8 See, e.g., Eq. (A10) of Ref. [11]. In this formula an analytic continuation in ¥ is understood, equi-
valent to our regularization.
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The difference between the last two formulae i. e. (3.4) and (3.6), is quite important,
as it is given by

1 -
7 {fy’ee(r_g_’ rl)S+(Al)+jy'ee(rJ_’ P, —r))S (A_L)}s

which is (in the lowest order in v) just the one photon exchange (Bethe-Heitler) amplitude.
The proof of Eq. (3.6) is quite straightforward. First we note that for any positive
number & the convergence of S,f(q 1) to S*q 1), as given by Eq. (2.5), is uniform in the
region |g, | > ¢. Obviously, the convergence of §f(q 1) to S*(q 1) when ¢ — 0 is also
uniform in this region. It follows that
lim §d?q #"(r ,p,,q,)S(r, +4,)Sc(r —q))

x=+0+ =

= lim { d’q, " (r, p,, 905, (r, +4)S;(r, —q,), (3.7
e~ z
where Z denotes the region where [r, +¢,| > ¢ and |r | —q,| > & Now, since ¢ may
be arbitrarily small (in particular £ < |r, |) and since #7* is regular for ¢, ~ +r,, it
is sufficient to prove that
lim e¥*(2r)~2 5 d’q,Si(q) = lim 2n)™* | d%q,S¥qg,). (38)
x—+0+ las]<E e=0+ IUTYES
In appendix B we show that this equality holds and, incidentally, its LHS = RHS = (£2)*?,
This completes the proof of our statement (3.6) and, quite generally, provides a precise
definition of the ¥ — 0 limit of the S-matrix. Some of its properties are discussed in more
detail in Appendix B.

3B. High-energy limit of the unscreened case

Let us consider now the high-energy, fixed momentum transfer limit of the amplitude
calculated by BM for the unscreened potential. We shall show that this limit is equal to
the limit previously considered,

! lim 4§50, w) = lim —(B;) MEE (). 3.9
W x~0+ oo W ﬁ
The no-screening amplitude in this case is given by an overlap of the wave functions
analogous to (2.9) and (2.10) but with the replacement of v by —v and p, by —p, in the
wave function y, (this wave function describes then the outgoing positron). As before,
the amplitude can be expressed in the form

7ee(w) =¢e

oo
u(py) [ydi+v5v07 - L+ - Isyoy;1v(py) (3.10)

sinh v

where the integrals I, I,, I, are defined by (2.16)-(2.18) with (2.13) and with Eq. (2.12)

replaced by

Fy(x) = F(=iv, 1;ip,|x|+ip; - x). @.11)
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Similarly to what we have done in the preceding section (see Eq. (2.20)) we rewrite
now the integrals I,, I,, I; in momentum space, using the Fourier transforms of the
functions F, and F;. We are then able to show that, for instance, I; reduces in the high-
-energy limit (@ — o) to

I, o —2i(dmy ST g g, (ﬁ )
2

% (2ny~? lim 5dqu[(u+q¢)2“””"‘”(rl—ql)z“'""‘”]'l[(m—ql)2+m2]“1- (3.12)
0+

The regularization with ¢ — 0+ arises here from considering the integral I; as a function
of a complex variable v. More precisely, I, can be written as
I, = lim [d*xe™™ %~"*! F (iv—p; 1; ip,|x|+ip, - x)

A=0+
e 0+

x (Fy(—iv—g;|; ips|x[+ip, - %). (3.13)

The last integral is convergent for any ¢ > 0 and the result of integration is an analytic
function of p. If we now take the limit w — oo, it appears that some limiting
transitions under the integral sign are permissible as long as ¢ > 0. This allows us to
perform the g, integration, resulting in Eq. (3.12). The details of this calculation are
given in Appendix C.

Inserting Eq. (3.12) into (3.10) we obtain the contribution proportional to the first
term in the curly brackets in Eq. (3.2). The remaining integrals I, and I, can be calculated
in the entirely analogous way. It turns out that when w — oo only (I, 3), are different
from zero, because in (I, ), the integrand is an antisymmetric function of the integration
variable g,. The same result was obtained in Ref. [2]. The I, and I, terms in (3.10)
are proportional to r, +¢, and r —¢, respectively because of the configuration space
differentiation involved in (2.17) and (2.18). Adding up the terms with I,, I, and I,
gives us finally Eq. (3.9).

Note also that proving Eq. (3.9) provides us also with explicit analytic expressions
for the g, -intgrals appearing in the impact formula (3.6). The necessary formulae are
listed in Appendix C.

4. Summary and conclusions

The most important findings of this paper can be summarized in the two equations
below:

— lim &*® 457k, ) = lim — [40) A =B #5E (w)

@ -0+ oo

1 -
= —2iw ;2- fe’ey(f_j_, P_L)S (A_L), (4'1)
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and

1 1 —-iy
= lim A5k, ®) = lim — (-ﬁ—‘) A5 (@)
W x>0+ w-s o O ﬂz

- 1 ee
= hm ia)(2n) zj\dqu ;ijr' (I’_L,p_j_’ q_L)

e~ 0+
X {§S+(r_g_ + qi)§;(r_[_ - q_L)—(Zn)452(rJ_ + q_;_)éz(r_j_ - qL)}' 4.2)

Here .#p is the high-energy amplitude calculated in the impact picture for a screened
Coulomb potential (x > 0) and # g is the amplitude calculated using the Coulomb wave
functions (with no screening) at finite energy. The impact factors # and the Coulomb
“S-matrix elements” S* and Sj are given by Egs (2.3), (3.2), (2.6) and (3.5).

The two equations above state that, indeed, in the cases considered the limits w — o0
and k — 0 are interchangeable. One can thus say that the impact picture (originally
obtained for x > 0) holds also for the infinite range potential (x = 0) in the sense that

the limit lim [(phase factor). 4 (k, w)] is numerically the same as the high-energy amplitude
K—+0

calculated with ¥ = 0.

This result is not surprising for pair production where the incident photon does
not interact with the potential and, in the impact picture language, the scattering occurs
only after the “fluctuation” independently of whether the potential is of a finite or an
infinite range. The validity of the impact picture is not so obvious in bremsstrahlung
where, for finite 4, two different sets of Feynman diagrams contribute in the cases
k>0 and x =0 when w — oo. In spite of this difference there is still a noticeable
physical similarity of these two cases. In the screened potential the amplitude becomes
at high-energy a sum of two terms: in the first term there is no electron scattering
after the emission of the photon and in the second term no scattering before the photon
emission. In the nonscreened field instead of no-scattering there occurs (multiple)
scattering with a very small (~m?*®) momentum transfer,

Another result contained in Eq. (4.2), which seems to be rather important, is that the
x — 0 limit of the (cikonal) S-matrix element S7(g,) is given (after extracting an appropri-
ate phase factor) by the quantity S*(g 1) or, more precisely®, by the regularized expression

lim $)(g,), and not by (2r)*6%(q,)+S*(q,). The latter assertion, commonly used in
e—~0+

the literature [3, 5], leads to incorrect results in the case of pair production.

We should note here, however, that in some other processes both assertions give the
same result. This is, for instance, the case for Delbriick scattering where, due to the sym-
metry propertics of the amplitude, the 5-function parts of the S-matrix elements do not
contribute.

To conclude, our results show that in the cases considered the procedure of taking
the x — 0 limit of the impact formula (obtained for x > 0) reproduces correctly the high-

? The mathematical properties of the » — 0 limit of the Coulomb amplitudes are discussed in more
detail in Appendix B.
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-energy amplitude for k = 0 (no screening). This should enable us to apply the very useful
impact picture techniques to the processes involving unscreened Coulomb fields except
for the almost forward region, |4, | ~ m*/w.

The authors are indebted to Professor W. Czyz for suggesting the subject and for his:
constant interest in this work. Thanks are due to Professors L. C. Maximon, R. Pratt
and K. Zalewski for helpful comments and remarks. One of us (T.J.) also wishes to thank
Professors W. Zimmermann and L. Stodolsky for their hospitality at the Max-Planck-
-Institut fiir Physik und Astrophysik, Miinchen where a part of this work was done.

APPENDIX A

We estimate here the integral I{®’ appearing in Eq. (2.22). Using Eqs (6.7) and (6.12)
of Ref. [2] we can easily calculate the Fourier transform F,(g) as defined by Eq. (2.21),

Fi(g) = 4mve *™2p,(g" + 2371 "0 (¢ + 42 +2p, - g =2iApy) "' T,

and similarly for F3(g). Substituting this into Eq. (2.20) and setting gq,, = r,+g¢,,
g2; = r.—q, with r, = 34, we get in the high-energy limit

1 oc (4nv)’[40’(1=F)]""Q2n)* | dq;  d*q, 8%(4  ~q:, —q2))

x [ dg,[g2, +(a.+7)* ] g2, +(g—r)?] "

2 2 —1—iv 2 2 —1—iv
qi, +(g.+r) . 9z, +(q.—r.) .
X | —————— g, tr, it — - +q,—r,— .
[ 2w 477 P ETTTE

Here Z, denotes the region of integration where both |g,,| > ¢ and [g, | > &

In the g.-integral above the singularities contribiited by the last two factors (their
location being dependent on w) fall both above the real axis. The other singularities,
originating from the first two factors, are placed at g, = r.+ilq, | and ¢, = r.%ilq, |,
and their distance from the real axis is never smaller than ¢. Therefore, even if @ — o,
the integration contour is never pinched between the singularities in the upper and lower
half-planes. It follows that the w — oo limit of the integral exists and It is, except for
the trivial phase factor, w-independent.

APPENDIX B

In this Appendix we discuss some properties of the Coulomb scattering amplitudes
in the limit ¥ = 0.

Let us first prove Eq. (3.8). We write the integral on the LHS as

@n)? | d’q,SHgq) =1+Qm)7% | d’q fdx eTitr e [eFilnab _q]

lecl<s fas{<$

& o
= 1+ [ qdq | xdxJo(gx) [e¥*P —1],
) 0
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where, according to (2.4),

1(x) = 2vKy(kx).
‘Since tha last x-integral is convergent uniformly in g, the g-integration can be performed
first yielding

1+ jxdx —i— J1(Cx) [eF*—1] = ¢ Idel(éx)e*"“’.
0

This integral is convergent uniformly with respect to k, which allows us to take the k — 0
limit inside the integral. If we use then the expansion for small z [9],

Ko@) = ~In(3C+0(z*In 2),

and recall Eq. (2.7), we obtain for the LHS of Eq. (3.8) the value (¢?)*" which is equal

to the RHS.
Let us consider now some mathematical properties of the ¥ — 0 limit of the Coulomb

S-matrix. This limit, say (pi,
lim e¥*®S5(q)) = 9*(q,), 3B.1)

k04
is a distribution defined by specifying its action on a (sufficiently regular) test function
f(g,)- In the standard notation we have

(95, ) = §?+ fd*q,SE(q )f(q)),

with S given by Eq. (3.5).
It is interesting to observe that the distribution (B.1) possesses an expansion in powers
of v. It can readily be checked that

¢*(g,) = 2n)*6%(g, )+ Z ?a(4.),
where the expansion coefficients are distributions defined by

) (Filn &) 4n(Fi)" (Inq3)"!
(gx,f) = lim {(2n )2—-—-——f(0l)+ d*q, =—f(q,)¢-
-0+ (n—l)' q
laosl>¢
The distribution (B.1) contains then the &-function term analogous to that in the
expansion of the S-matrix for x > 0

4ny ,
S¥(q,) = @0)*%q ) Fi 55— + ‘2.
s DFims
It is seen that, for instance, the ¥ — 0 limit of the lowest order (~v) Born amplitude
does not exist, neither as an ordinary function nor a distribution (in a space of test functions
non-vanishing at ¢, = 0). However, there exists, as a distribution, the limit

) 4nv
lim {Fix—7 = +21v Inkp = vo, (q_;_)
K0+ 7 +x*
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APPENDIX C

In this Appendix we will prove Eq. (3.12) for the integral I; appearing in Eq. (3.10).
More precisely, we shall evaluate the limit

1
L = lim — I,. C.1
Jme (c1
To start with, we analytically continue the wave functions F; and F5 in v in order to
regularize all the subsequent integrals. Thus, instead of F; and F;" as given by Egs (3.11)
and (2.13) we will use

Fi(x) = lim (F(—iv+p,1;ip,|x|+ip, - x) = lim F,(p, x), (C.2)
=0+ o0+

F¥x) = lim (F (iv+oe, 1;ip,x|+ip,-x) = lim F3(p, x). (C.3)
o~ 0+ -0+

Now the space integration in (2.16) is uniformly convergent in x for any p, provided

A > 0. Therefore we can take lim out of the integral obtaining
e-0+

ig = lim lim L d*xe MIF (0, X)F3(0, x) = lim lim A(w, 4, 0). (C4)

w i=0+ =0+ W A0+ @0+
An analytic expression for I,(4, ) can be achieved by simply substituting
a, = v+ip and g, = v—ip in the general formulae given by BM (Eqs (6.7) and (6.12) of
Ref. [2]). An examination of the formula obtained shows that 4(w, 4, ¢) is regular at
the point A = g = 0 and w — . Therefore, the limits can be interchanged with the

result
L= lim lim lim A(w, 2, 0). (C.5)

=0+ w2 A0+

Next let us go over to the momentum space. Using again the formulae given by BM
we can easily calculate the Fourier transforms of the wave functions Fy(o, x) and F; (g, ¥)
and obtain

1 - - -
A(w, 4, 0) = :o‘ (2m) } J.d3‘11d34253(-4-q1 —q,)F (0, (II)F;(Q’ q2)

= —(@mv)*4p,5,(2m) 7 [ d*q dQ[(r, +q,)’ +(r,+Qlw)* +47] 71T
x[(r,—q,)"+ (.~ Qo) +A7] 710
x[(r, +q, ) +(r,+ Q) +22=2p, | - (r, +q,)~2,0(r,+Qw)—2iAp,} ' TP 7¢
x[(r, —4,)° +(r.— Q) +4*=2p, | - (r | —q,)—2B,0(r.~ Qlw)~2idp,] " """, (C.6)

where we have introduced a new variable ¢, such that ¢, = r+¢, ¢, = r—q, and rescaled ¢_,
Q = g,

Our aim now is to perform (in the limit considered) the Q-integration in the formula
(C.6). This will leave us eventually with the ¢, integral (3.12).
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To this end let us divide the region of the g, -integration into three regions: =,, =,,
and the rest, say Z,. The regions Z(i = 1,2) are defined by the condition |gq;, | <¢,
the constant ¢ being chosen such that 4 <¢ < |r,|. Eq. (C.5) can then be rewritten
identically as

L= lim lim lim lim (4,+4,+4,), (C.D
e—~0+ &0+ w=ox A0+
where the subscripts 0, 1, 2 refer to the regions =, Z,, £, in the g  -integration. Below
we will see that in A, the Q-integral can be evaluated explicitly whereas the terms A,
and A4, give a vanishing contribution in the limit of Eq. (C.7).

Let us then consider the Q-integral with ¢, in the region Z,. The location of the
singularities of the integrand in the complex @ plane is shown in Fig. 5. The branch points
ek =1, ..., 4) come from the Coulomb amplitudes, and the branch points «, from

@

x ©1 XCA

X X

as 03

% xR NN
]

X X

Fig. 5. Singularities of the integrand of Eq. (C.6)

the rest of the integrand in Eq. (C.6). A crucial point now is that, when 4 — 0 and w — oo,
the integration contour never gets pinched between the singularities. Indeed, as long as ¢,
in confined to Zo, ie. |g,,{ > ¢ and |g;, | > & we have Ime, = w\/’/lz+qfi > ot
and Ime¢, = — oV gk | < —wé. Consequently, the integration contour can be
distorted to such a path I' (Fig. 5), that the integral along I' is uniformly convergent in
the himit lim lim. Taking this limit inside the integral yields

@-+00 A0+

~(4mv)*(B,/B,)" lim lim (2m)~*? ;[ dqu{(r;_i‘_kl)Z]'-l—iM-o

20+ I-0+
X [(ri_ql)Z]-lﬁ'iv-i*gi’j (IQ[_Q+b1}~I+iv—Q[Q+bz]-—l—iv-g’

where

i
by = 26, [(r +4,7=2p;, " (r, +q,)]—or, (C.11)
1
1

bZ =z [(r”i_ - q;,)z _Zpl 2 (r - q,L)] —wr.. (C12)
26,



853

The Q-integration can then be easily done giving

sinh nv

lim lim (28,6,)*?¢2n)"2

TV  g—=0+ &0+

—i(4nv)*(B/B)"
% :j dqu[(rj_ + ql)2]-— 1 —iv+a[(r_L _ q_L)z:I—l +iv+a[(P-L _ ql)Z + m2]—1 —29‘

It is easy to see now that, as long as ¢ > 0, the limit & — 0 exists and is equal to the integral
over the whole space. In the last factor in the integrand we can also put ¢ = 0, thus
recovering Eq. (3.12).

The last step is to show that the integrals over 5, and £, (i.e. terms 4, and A4,) do
not contribute to the limit (C.5). For definiteness let us consider the region =,, i.e.
lg2, | = [r, —q,| < & (the other region can be treated analogously). The contribution
from %, to the limit (C.6) can be written (remember ¢ < |r,[) as
—(4nv)*(B,/B)" lim lim Lim lim @?7*"72%)7Premy [ dPq, G(g,))

=0+ £-0+ w—w A-0+ lazs<$

(C.13)
where

G(qu_) = de(—Q-{. bl_isl)—l+iv-—a(Q+b2_i82)—1—-iv~g
X (Q—cy) 1TreQ—c,) T e, (C.14)

2 o

x .
by-igy
x

€3

Fig. 6. Singularities of the integrand of (C.14)

Here b, and b, are given by (C.11) and (C.12), ¢; = 2B,Aw, and ¢; = r,+iw \//12+q§_L,
C3 = wr,—io v 12 +q2 - The positions of the singularities in the Q-plane are shown in
Fig. 6.

To estimate the integral in (C.13) it turns out to be convenient to split again the ¢, | -in-
tegration region into two regions, Bl/ow < |g, | < ¢ and |q,, | < B/w, with B> |b, +b,|
and B> |wr,|. Tt is easy to see that in the first region G(g.,) ~ (w?q3,)""*""e,
and the contribution to Eq. (C. 13) is ~ &¥*°—(Bjw)™*®, which vanishes in the limit
considered. In the second region the Q-integration path can be pinched between the branch
points —b,+1ie, and ¢;. The pinch-point contribution can be estimated by closing the
integration contour around the points —b, +ie, and ¢, (see Fig. 6) and noting that in the
limit g, ;| = 0 and 4 — 0 these two points coincide producing a second-order pole. Tts
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residue is ~ (w?q3,)""*™?*%2 and the contribution to Eq. (C.13), ~ o~ " %(Bjw)"*e
= @~ 2" 2pv*e a0ain vanishes in the limit considered.

This completes the derivation od Eq. (3.12). We should also note that this equation
and similar equations for the integrals 7, and I provide us with explicit analytic expressions
for the ¢, -integrals occuring in Eq. (3.6)'°. They can be obtained by taking an appropriate
limit in the analytic expressions derived by BM (Eq. (6.3) of Ref. [2]). Denoting

fg(Q_L) = {(r_J_ + ql)z(lﬁv_g)(r_;_ - Q_L)Z(l-iv_e)]-l[(?_]_ —ql)2+m2]—1,

we have
lim (2m)°2 | d%q, f4,) = — ——0 By
em0+ 9.Jd.) = 4ny sinh av\R,
v 1 L W 2 2
YOL 1) wwemT  omT A\ (C.15)
D Rl Rz RIRZ Rl Rz
lim @0 | 0,0 —a0ftay) = — —— (21}
004 9.8P,. =918, = 4nv sinh v \ R,
N V(&) p,—r;, P tr, _iVW(f)mz P, —r, +pl+ri , (C.16)
D Rl R2 R1R2 Rl Rz
where

D= 4ris Rl = (p_l_—r‘j_)z-}'mz’ RZ = (p_]_+r_L)2+m2’ V(E) = 2F1(—iva iV; I; é),

W(&) = ,Fi(1—iv, 1 +iv; 2; &), & = 1—m*D|R\R,.
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