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A method is given by which we can generate asymptotically flat axially symmetric
electrovac metrics from solutions representing empty space gravitational fields. The method
allows us to generate an infinite chain of solutions of source free Einstein-Maxwell equations.
Several new electrovac solutions are obtained from the gravitational fields found by Schwarz-

schild and Zipoy. A method is also given for generating an analogous stationary solution
of source-free Einstein equations.

1. Introduction

Various authors have given different classes of axially symmetric static electrovac
solutions in different coordinate system (See e.g. [1-5]). Bonnor [2] and Harrison [6] in
particular outlined methods of generating electrovac metrics from static fields. In this
paper we give a different method of obtaining axially symmetric static solutions of Einstein-
-Maxwell equations from static vacuum fields. We obtained new electrovac solutions from
the gravitational fields of Schwarzschild [7] and Zipoy [8].

All the solutions are asymptotically flat at spatial infinity. When the electrovac field
is switched off, the resulting metric is different from the generating vacuum metric. We
can generate a more complicated electrovac solution from the resulting metric. Thus
we get a series of axisymmetric electrovac solutions starting from one and only one static
vacuum metric. We also give a- method for generating an analogous stationary solution.
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2. Method of generating electrovac and stationary solutions
We shzll reed the follewing two metrics:
ds® = e*di* —e " **[e*M(dx? +dx3)+ x7dx3], (1)
ds? = e2dt* — e P [ Hdx? +dx2) + x3dx2], )
where o, & A and A are functions of x, and x, only.
Metrics (1) and (2) correspond to axially symmetric static vacuum (called generating

metric) and static elcctrovac (called generated metric) fields respectively. The equations
to be solved for determining the metric (2) are:

Ry = —8nEy, 3)
E', = —F“F,,+1 8" F"F,, 4
Fiju+Fpu+Feay = 0, )
F*, =0, (6)

the semicolon denoting covariant differentiation. Defining F;; = K; ;—K;;, where K;

is the four potential, equations (3)—(6) reduce to the usual form

V2% = e 24P+ @), (7)
ViP = 28,®, +28,P,, (8)
Iy = %, [(@ - @) —e X (dT— D)), ©)
7, = 2x,[5,8,—e PP, 0,], (10)
where
K; =(0,0,0,1 n ). (11)

V2 is two dircansionel Leplecien operator in the coordinate system concerned. K; may
have the thiré comycnant also or both the third and fourth components simultaneously.
We shall presert the sehution of (7)—(10) in the general form having both the magnetic
and electric scalar potentials.

The field cquations derived from Ry = 0 for metric (1) take the form

Vi =0, (12)
Ay = xy(af —a3), (13)

Ay = 2X%,0,,. (14)
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If we know the solution «, 1 of Eqs (12)—(14), then we can obtain & and 2 from the following
equations. We can verify by direct substitution that the latter satisfy Eqs (7)-(10).

- 2y ya T2
7= 9%, (16)
e 1
28K, = 2n(1 —4n?) [1—4;:%2“ - 1_4n2], (17)

B .
Fij = A[K;;—K; ]+ ) &junK"", (18)

where A>—B? = 1, and &, is the permutation tensor which is antisymmetric with
respect to every pair of the indices and g,,3, = \/ g, g denotes the determinant of metric (2)
and 7 is an arbitrary constant % +4. Indices have been raised in (18) with respect
to metric (2). The constants have been chosen so as to make generated solutions
(15)-(16) asymptotically flat at spatial infinity if the generating metric is asymptotically
Minkowskian.

If now, the electric and magnetic fields be switched off by making n = 0, we get new
static vacuum fields with e*’* in place of e**. Repeated use of the new vacuum fields
generated by making #n = 0 each time, shall give rise to a series of electrovac solutions
(when y # 0,1). Thus this method also enables us to generate a series of axially symmetric
source-free gravitational fields from a known solutions. Alternatively, the family of electro-
vac fields generated from the metric (1) can be obtained by simply putting different values
of the constant y in (15)—(18). Singularities associated with the solutions (15)—(18) will
be discussed in detail when we give particular applications of the method.

It is also noticed that solutions (15)—(18) may give stationary gravitational fields
as follows. We write the axisymmetric stationary metric in the form

ds® = f(dt—wdg)* —f ~'[X(do” +dz) + ¢’ d9”]. (19)

Ernst [9] introduced a complex potential function & which determines uniquely all
the metric coefficients

& = f+ig. (20)
With the above notations, it is found that f; ¢, @ etc. can be generated from (15)—(18).
(1+4n%)e™
= 21
f 1+4n2e** ’ @D
2vya
2
¢! == 2n(1+4n )[m +C] 2 (22)
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where C is an arbitrary real constant and
w, = 4nyoa,, W, = --4nypu,. (23)

Thus axially symmetric stationary gravitational fields can be constructed from a static
exterior solution of the Einstein-Maxwell equations given by Eqs (15)~—(18).

3. Application of the method

(i) Schwarzschild solution as the generating metric:

We take the axisymmetric form of the Schwarzschild metric.

dSZ — eZadtz_e~21{eZu(dQ2+d22)_§_92d<p2]’ (24)
with
Rl +R2_2m
=1In - R 25
*=1 I:R1+Rz+2m] (25)
2w (Ry+Ry+2m) (R, +R,—2m)
e = .
4R R,

R} = o®+(z—m)’, R; = o*+(z+m)". (26)

From (15)—(18) we construct the new electrovac metric in the form

¥ ¥
as? [(1-4n2> (R, + Ry +2m)2(R, +R2~2m)7]2 :
§ =
(Ry+R,+2m)’ —4n*(R, + R, —2m)"

[ (R, +R,+2m)’ —4n*(R, + R, —2m)’ ]2 [{(R1 +R,+2m) (R, +R2—2m)}"2

Y ¥
(1—4n*) (R; +R,+2m)2(R, + R, ~2m)% AR1R,
(do® +dz%)+ desvz] : 27)
R, +R,—-2m)" 1
2K, = 2n(1 —4n?) (R, +R, _ ") - 5 (28)
(Ri+R,+2m) —4n"(R;+R,—2m)’ 1—4n
Asymptotid expansions of g,4 and K, in the Schwarzschild coordinates,
02 = (r*=2mr)sin®* 0, =z = (r—m)cosb, (29)
are given below
(1+4n%) 2ym  (1+32n*—208n*) m*y? N 30)
84 =7 1=and) r (—an?? 2 7
4 1 2nm*y’(1+16n%) 1
2K, = nmy nm~y*( n-) 1 31)

T (1-4nd) r (1-4n®>)  r?
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Expansions (30) and (31) show that g4, — 1 and K; = 0 when r — «. Asymptotic behaviour
of K, shows that the source contains both the monopole and dipole moments. The electric
charge, e, is defined by [11]

e = [{F, ghgt,dode. (32)

For simplicity, integrating (32) over the surface of a spatial sphere as its radius becomes
infinite, we find in our units,

8ntnmy

e = i (33)

The charge to mass ratio comes out to be,

8ztn

“Im= vy

€0

When m = 0, ¢ = 0 and we have flat space. We now switch off the electromagnetic field
by making n = 0, then the metric (27) reduces to the form

i = R, +R,-2m 7,1:2- Ry +R,—2m\""[((Ry+R,+2m) (R, + R, —2m))"
R,+R,+2m R,+R,+2m 4R;R,

x(de*+dz*) + gqua’] . 35)

Transforming to Schwarzschild coordinates by Egs (26) and (29) we obtain the metric
in the form given by Esposito and Witten [10]

2mY’ 2m\~? r*—2mr L
ds? = (1= ) ar— [1- dr?
* ( r ) ( r ) {(rz—Zmr+m2 sin? 9) ’

2 =2mr)”
F*—2mr+m?sin? )" !

d6? +(r* —2mp) sin? quaz} ) (36)

y = 1 gives the Schwarzschild solution. Esposito and Witten [10] have studied the behaviour
of the metric (36). It is spherically symmetric only when y = 1. r = 2m is the surface
of infinite redshift for all values of y. But this surface is singular except when y = 1. So
all the solutions found by Esposito and Witten exhibit singular infinite redshift surfaces
except when y = 1. Hence Schwarzschild solution is the only one in the family representing
a black hole. All others have naked singularities. Further the source with an exterior
described by such a solution with y # 1 could have an area smaller than that of an approxi-
mately defined Schwarzschild surface.



908

Our electrovac solution (27) in Schwarzschild coordinates reduces to the form

Y2 -2
(1——4n2)<1~— 3'3>7 (1—4n2)(1— 3"—1>7
r

- r

— 2 — 2— y — 2 — _2 — V
1-4n{1 1—4n{ i
¥ r

X{( — )Y_ldru (77 = 2mry" d6?

. . ~2 =
r?—2mr+m?sin? 6 (r* —2mr+m? sin? )" 7!

ds* =

+(r? —2mr) sin® Hdgvz} . (37)

For y = 1, the metric (37) is spherically symmetric and reduces to Reissner-Nordstréom
metric with the following transformations

(1=4n?)r" = (1 —4n®r+8mn>.

We find here that r = 2m surfaces are still the surfaces of infinite redshift, which are
singular except when y = 1.
(iif) Zipoy solutions as the generating metrics

The equilibrium shape of a rotating star is an oblate spheroid. Zipoy {8] used oblate
spheroidal coordinates and showed that solutions for “Newtonian potential” can be
written as a linear combination of Legendre polynomials of integral order /. He obtained
solutions corresponding to /=0, /=1, and a combination [/ =0, 1. We use those
gravitational solutions to generate electrovac fields by the above method. Metric (1) can
be written in oblate spheroidal coordinates as

ds® = e*dt* — a’e**~(sinh? u +sin® 0) (du® +d0?) — a®e™ 2" cosh® u cos? Bdg?,  (38)
where
x; =acoshucosf, x,=asinhusingd, x3=¢, ao=o. (39)
Case (a) [ =0

Zipoy’s [8] solution for / = 0 is given below:

6 = —Btan"'(cosechu), B = n , (40)
a

(41)

sinh? u +sin® 0
i=1pfn <—-——”———_) :

cosh? u
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when »1 is 2 constant. The electrovac solution can be written immediately from (15)—(18).

2 (1—4n2)e—"'ﬁ tan — 1 (cosech 1) 2
e = [ 1 —4p2e= 278 lan“(cesechu):] , (42)
;B (Siﬁfz_‘.‘_tsmzf) @)
2 cosh” u
o~ 2B tan” 1 (cosech ) 1
2n* K, = 2n(1—4n?) [‘1_4nze—2yﬂ tan =1 (cosechu) | —4n2] (44)

The asymptotic behaviour of (42) and (44) was studied with the following transformations
of coordinates.

r = a(sinh® u +cos? 0)* ——>a sinh u, (45)

_ a sinh u sin 0
§ = sin"?!

> 0, (46)
Ia u—a

where (r, ) are spherical polar coordinates but § is measured here from the equator
rather than the pole for comparison, with oblate spheroidal coordinates. We give below
the asymptotical expansions in the case y = 2 for simplicity

2 1w4ﬁa(l+4n2)l 0(1

- . 4
(1—4n2) ¥ r2) + 47

8nfa 1 lénp*a*(1+4n?) 1

2ntK, = — — — 48
TR T T (e (I—4n?) 7 %)
The charge to mass ratio comes out to be,
) 8nin 49
efm = —— |
M= A5 )

The electrovac metric is well behaved and e = 0 when m = 0. It is seen from the expansion
(47) and (48) that the monopole and dipole terms both exist in the electrovac analogue
of Zipoy’s / = 0 solution. Here also we do not get back Zipoy’s solution of gravitational
field, / = 0, when we switch off the electromagnetic field.

We know that u = const. surfaces are oblate spheroids and the above solution
(42)—(44) depends on u alone. Hence this has spheroidal symmetry. It should be noted

Suv

that 8 is discontinuous as § = const lines cross # = 0. We find that is discontinuous

~

czZ

0K, .
over the disc z = 0, p <. a. Moreover —5— is also discontinuous over the disc z = 0,
74

0 <a.
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Case (b): / = 1.
Zipoy [8] gives for [ =1,
o = 6{1—sinh u tan™' (cosech u)} sin §, 0 < tan™! (cosech u) < , (50)
sinh? u +sin® 0
2= —-16%In (m—cosﬂfu—> —% 8% cos 0{[tan"* (cosech u)]?
~[1—sinh u tan™" (cosech u)]*}. (5D

Proceeding in the same way, we can write down the electrovac solutions easily. Asymptotic
expansion of ¢** and K, for y = 2 are given by

da® sin 6 (1+4n?) +
P (1-4n?) 77

e =142

(52

8nda’ sin 0

27(%K4 = m + ...

(53)

Asymptotic flatness of ¢** is retained here but there is no mass term. Secondly K, does
not contain a monopole but higher multipoles. Since a mass dipole contains equal quantities
of positive and negative mass, the total mass vanishes. Here g,, is discontinuous across

0wy . : :
the disc z = 0, o << & and so also is —(;iv— Dipole moment in (53) vanishes when n = 0
z

and the line element does not reduce back to the gravitational metric of Zipoy for / = 1.

One of the duthors (KCD) likes to thank his colleagne Mr. Amitava Chakraborty
for his keen interest and helpful cooperation in carrying out this work.
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