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¢ .
Nonlinear scalar interactions of the form N —i—'i(W}N)‘ are considered in the

=1

large N limit. The renormalization of the generating functional for Green’s functions in three
dimensions is performed up to the next to leading order. The induced derivative couplings
are absent to this order. The generality of the approach allows one to study all nonlinear
O(N)-symmetric scalar interactions, provided they are expandible in a Taylor series in @%/N.

1. Introduction

This note is intended primarily as an effort to further development of the formalism
of the 1/N expansion [1, 2] in application to the nonlinear scalar interactions of the form:

o? 2 1 [\,
Vo (W) = 2 ;;,(F) Vo(0), (8]

k=0

where
N
=Y 0,0, (1.2)
a=1

Considerations concerning similar but one-component models often appear in the literature
especially as of the last ten years. We do not even attempt to include a list of references
here. Most of the effort in this direction has been based on the conventional perturbation
technique using the expansion in powers of the coupling constant. None of the invented
methods has been fully successful. Except renormalizable theories in two dimensions
(Sine-Gordon!) all horrors of the infinite number of the induced derivative couplings
are present even in the second order of the expansion in the coupling constant.
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The above difficulties have halted the progress in the theory of bounded interactions
[3] where one believes in the good large momentum behavior of Green’s functions but a
skillful method avoiding the expansion (1.1) has not yet been invented.

Recently considerable effort has been made to understand the meaning of nonrenor-
malizability [4, 5] and it is apparent that because of the nonanalyticity in the coupling
constant the conventional expansion techniques are not powerful enough to face non-
renormalizable interactions. Therefore attention has been called to the methods which
avoid the Taylor expansion in the coupling constant. The large N expansion seems to be
suitable for this task [6]. It was shown for the somewhat academical example of the
quartic interaction in more than four dimensions that in the large N limit the resulting
theory is finite, free of the ambiguities and possessing the ground state [6, 7).

Schnitzer [8] gave a careful analysis of the leading order 1/N approximation of
theories described by Lagrangians with interaction parts of the form (1.1) in two and
three dimensional space-time. The main result of his work was that the leading order
Green’s functions can be renormalized without the usual proliferation of the parameters
and that the large @2 behavior of the theory is just as for the renormalizable ones.

In the present paper we show that the situation does not deteriorate if the next to
leading corrections are included, provided we deal with an essentially infinite sum in (1.1).
We give the explicit formulae for all counterterms that allows to study all interactions of
scalar particles, provided the interaction part of the Lagrangian is a Taylor expandible
function of ®2/N.

2. Effective action

Let us consider the O(N) symmetric Lagrangian with the interaction part expandible
in powers of ®?/N

2

Z[®] = 1 (0,9’ NV, (%) , .1

where

¢2 = 1 @2 k
Vo (F) = Z ;:,(F) V), (2.2)
k=0 )
and
N

=Y 0,0, 2.3)

We shall calculate the generating functional of the 1-particle irreducible Green’s functions
(effective action) I'(p, G) using the method of Cornwall, Jackiw and Tomboulis [9]

I'(p, G) = W(p)+1ihtrlog G-+ ih tr D-()G+T (g, G), 2.4)
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where W(g) denotes the classical action in terms of the classical field ¢, 9 is the free
propagator, G the exact propagator to be determined from the requirement:
(e, G)
6Gap(x, ¥)

Finally I', is the sum of the 2-particle irreducible vacunm graphs constructed from the
exact propagators G,(x, y) and the vertices generated by the shifted Lagrangian Z(®+ ¢)
whose interaction part equals

(¢+¢)2 (pz (pZ
Lin D5 p) = —NVO< N + NV, W‘ +2¢,9, V(l) N

2 ‘P% 2
DD, | 8, ViV | = L2y =—1}]. 2.6
+ a bl: N N N ( )

2

2
Here and in the following V™ (%) denotes the n-th derivative of ¥, (%) with res-

2 = (k+n) 2\k
w( P Y _ Vo 7 ™(0) ( @ )
Vo (———N ) = E T ) 2.7

(2.5)

pect to /N

The inverse free propagator equals

o 81I(gp)
P @i % y) = — D
D (9535 ) = G om0
2 g 2
- {[D +2VY (%)] Sap+4 ‘&3\‘;”’@ 123 (%)} (x—y). (2.8

We find rewarding to decompose (2.8) onto the transversal and longitudinal modes with
respect to the versor ¢ = ¢/|lg| in the isospin space

2
9 [D +2 (1)( N )] (5ab (pa&b)
2
L ()
2;) + \NJ

i +2V“’(
+i|l O ) N N

PaPy- (2.9)

1
A similar decomposition was introduced by Townsend [10] in his study of the ¥ &3 model.

The same decomposition of the exact propagator yields

Gab = g(aab"' a)a&)b) + g&a&b' (2'10)
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The form of g and g is implicitly given by analogy to (2.5)
ol (p, G) (g, G)

g i o2
Substituting (2.9) and (2.10) into (2.4) we obtain

= 0. (2.11)

q

2

h ) - ® ~
I'(p,G) = W(p)+ —2—fd"x [I(N—l)logg 1—(N—1)(D +2V¢§”(W—)) +ilogg 1]

h 2 2 2 -
-3 Id"x [[] 2V (%) +4 % y (%)] g+, (2.12)

e S o

Fig. 1. Vacuum diagrams contributing to I'; in the leading, next to leading and higher orders

- 00- 000

Fig. 2. Another kinds of graphs contributing to I',. These graphs do not contribute in the leading order.
Dots stand for the “effective vertices” as defined on Figs 4 and 5

O Q) D+

Fig. 3. Same as Fig. 2. Also these contributions are absent in the leading order

where I', collects contributions steming from the graphs on Figs 1-3. Using the 1I/N
power counting arguments we find that the relevant Feynman rules generated by (2.6) are

0L, (@, 2y ’
ind( P> @) - —in[2) yw K [8az - G- same
®=0 N N

L 00,(x) ... 00, (x)

+distinct permutations], (2.13)
62k+1$' t(@ 99) 2 k+1 (pz
i nth = —iN|{ — VEDL L6, 0, o Caseecamet -1
000 (3) - 0P (OB oo (N) N B R
(2.14)

and
i aZkgint((b’ ‘P)
0P, (x) ... 0D, _(x)0P(x)0D(x)

P=0

2 k+1 (pz
= —iN{=] @@V = ) [Baiaz - Oazsmsaz—zt ---1- (2.15)
N N
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We are now in a position to evaluate the contributions I'}, I'Z and I'; from the diagrams
of Figs 1, 2 and 3, respectively. After some algebra we find that these of Fig.1 yield

2 2 2
ri=-N J d'x [Vo (—% +hg(x, x)) ~Vo (%) —ha(x, x)Vé”(%)]

2

» d
—h _[d"x {hgz(x, x)V§? (7\7 +hg(x, x)) —-(g-g)vs? (";{ "’g)

2 2 2 2 2

v (P N P sy (P 4\ f_“wz)(g—)}. 2.1

+(gg)o(N)+ NgVo N g 2Ngo N (2.16)
¢ = + + +

aa bb oa bb aa bb
Fig. 4. The definition of the “effective” &* vertex

A= b + b + b 4+ .-
‘E“ g a
a a a
Fig. 5. The definition of the “effective” @3 coupling
Before we proceed the evaluation of the remaining contributions to I', let us introduce

the subsidiary ¢* and @ vertices p and A as defined on Fig. 4 and Fig. 5. The calculations
require only a little of combinatorics and give

2
0o=V® (% +ha(x, x)) 2.17)
and
(pz
A= 2p,V® (7 +hg(x, x)) = 20 (2.18)

1
The above analysis exhibits the topological similarity of the general T, ®*" theory to the

1
I &* one. This fact was stated by Schnitzer for the leading order and now we see that

this property persists also in the next to leading order. We have a convenient tool avail-
able for a relatively simplified method of evaluating the complete diagrammatical expansion
for (2.4). We need not to calculate graphs containing all the vertices defined by (2.13)-(2.15).
Instead we may confine ourselves to diagrams involving only the Vierbein coupling and
then, in the result replace the coupling constant by the full series standing on the right
hand side of (2.17).

1
The similar technique was used by Townsend [10]in ¥ ®$ theory. Now it is apparent

that the situation in the $° model is a reflection of much more general topological property
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of the 1/N expansion. It is apparent that this pattern of calculation can be easily generalized
for higher orders in 1/N but obviously the number of the “effective couplings” will increase
order by order.

The next observation which will simplify the calculations and justifies the need for
the decomposition (2.10) is that the next to leading approximation of the transversal
mode g of G, is completely determined by the leading order results for I'. Indeed, decompos-
ing g into the O(1) and O(N-!) parts

g =g, +8yn+ON?) (2.19)
we find
. - . - V(p; g 8)
Vips g, 8) = V(g5 81> 8)+ 8w ST (2.20)
g 9=9
Therefore
(p:8 8 = V(p; 815 )+ 0N
because

oVip; g1» é)/agl = 0,

by definition of g, (compare (2.11)).
Differentiating (2.12) with (2.16) substituted for I', we recover Schnitzer’s result
for g~ {8]

2
gt = i[m+2v(§”(—‘i,— +he(x, x))], .21)
or in momentum representation
gt = —itk*—M?), (2.22)
M? being the solution of the “gap equation”
<p2
2 = 2Vé”(— +Bl>, (2.23)
N
where we have introduced
PR P A 2.24)
(2;:) k*—M

QO@O@Q

Fig. 6. The ‘bubble chain” diagrams contributing to I. Heavy dots mean the “effective” coupling ¢. Empty
circles recall that the factors at the ends of the chain are omitted

We are now ready to evaluate the remaining contributions to I',. It is convenient first
to sum the “bubble chain™ graphs of Fig. 6. The procedure is standard and gives
B,(k)

Ik) = —i a5’ (2.25)
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where

Bk i_ d'p 1 ! 2.26)
k) =~ Q)" p*—M’ (k+p)*~M*’ (2

Using (2.25) we obtain for the contributions I'> of diagrams of Fig. 2

d"k 0°By(ky .
-2 — _Sf R 4__2_.4 k 227
I ‘j@n) ( >1+4 B,(k) 8lk). 20
and for I'; of Fig. 3
1o = R e (14 0By + 200 | 2 By (2.28)
3= 5 (27.[)" g (123 no (27'[)" 20K ). v

Collecting all terms together we obtain
=T+, +O0N™ (2.29)

where the O(N) part I'y, reproduces the result of Schnitzer {8]

2 Y 2
Fo(p) = | d'x{L @09 =N|V, g +hg) —hgVV 9 +hg
) ' N N

2
+% Nih trlog [[] 42V, (1)(% +hg>:] (2.30)

1

and the O(N®) part I'(y, equals

9 ¢’ ¢
ro(p) = B3v® +B B, VD[ -Z- —hB, VY
wm(p) = I 1] +B, ko N +B N

2
2 (1)
R ~_ . pT=2V, ( “)
a i ! i N 2
22 g, LT AN e ()

Jeor (2 Tpi-M* 2 pi—-M

49’ @ ¢’ - '\ 29 . ¢
- V(Z) < V(l) B I/(l) V(Z) B
N O \—N g—g N +8;) +glhg N N N + By

2¢” . @ > . 0’By(p)
175 e —— g log (1+40B 20B . (231
N & (N> e gl+4932(p)+% og (1+49B,(p))+20B,(p) (2.31)

+

Solving the equation 8I'/og = 0 for g we find

- 4 2 2 2 -1
P [P VE T P A . (2.32)
N N 1+4pB,(p)
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Inserting (2.32) back into (2.31) and changing to Euclidean momenta we find after unpleas-

ant algebraic manipulations
2

(P* +M?*) (1+40B,)+4q %
log
(2n)"

E

h [ dp
r=rw-7 | @33)

p2+M2
It is easy to check by direct substitution that our general result reduces to the specific

1 1
results obtained by Root [11] for the ¥ ¢* theory and Townsend [10] for the N @°¢ model.

This seems to confirm the reliability of our calculations.

3. Renormalization

The expression (2.33) for the effective action contains the unpleasant logarithm so
it is rewarding to work with the derivative of the effective potential rather than directly
with I'. In the following ¥y, will denote the O(N) and V{,, the O(1) part of the effective
potential. We have

aV(N) 1 (pz
=V I- +B,], 3.1
PO +B, Gy
and
oV, h [ dp 1
3¢*IN 2 ) 2n) (P> +M?) (1+4¢B;)+409*IN
4(p* + M?)0dB,/dM?* —40¢*IN OM? s s sv’] de }
£ MH)B,+4 — | —— +4p};. (3.2

From now on we shall carry out all calculations in three dimensional space time. All
divergences which occur in the first 1/N order of any scalar theory in three dimensions
can be soaked up by normal ordering. This normal ordering is equivalent to shifting the
arguments of the expansion coefficients on the right hand side of (2.2) [8].

More precisely, the renormalized parameters ¥® are related to the bare ones VP
by the equation

v®(0) = V(). (3.3)
where ¢ is the linearly divergent constant proportional to the cutoff 4
hA
= — . 3.4
¢ 27:2 ( )

The renormalized version of (3.1) is
-~ 2
.a_V;ﬂ =y 9 _ tl..]! , (3.5)
d¢°IN N 4z

where —hM/4n is the finite part of B;.
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All the counterterms required to cancel the divergences of the expression (3.2) are of

order 1/N. Therefore their relevant contribution to while calculated up to the

oV
39*IN
next to leading order stems only from the diagrams which are topologically of order N.
The renormalization procedure will replace the coefficients ¥ of the expansion of V

by VY of the form
. . 1 .
V0 = VIO + 5 89, (3.6)

All the 8Y7’s are of order 1 and are determined by the divergent part of (3.2). Expanding
V§Y around its renormalized value V" we obtain

2
; . 5;;(1)("’ _ f_l.A_'I)
_ hM 1 A N 4
Vé”(%— +B1) = V“)(‘L - i—) +— E 8. el @)

N 47 N aVI0)
J
where
F17a80) ._?iz_ _@f
N ) 1 @* hM)j—1 L+ oh \ 71 38)
av90) T (G-DI\N  4n 4nM) '
or
oy (. _tM .
N 4n) 1 1 @’ hM)f’l oM? (3.9)
avi(0) T 20(-DI\N 4= ¢*IN’ '

Our present task is to separate the divergent part of (3.2) and to express it in the form
of the sum of terms having the same shape as (3.9), the most suitable for determining
the 6“s. In three dimensions B, is finite and equals

h . s h _ 4 -
B,(p) = - arcsin v/ p?/p? +4M? = —l—g(p2+M2) 172 {1-— - M(p*+MH 124 } ,

thus
0B, h 1 G.11)
oM* 8aM p*+M?*’ '
We also find
do 3 ﬁ hRM\ 1 oM?
. —— ) = (3.12)
09*IN N 4n /20 0¢°IN



928

Using (3.11), (3.12) and the fact that 6B,/0M? is cutoff-independent and equal to —h/8nM
we get

oV, a? 1 2 _ M
2(1), =k _fj _ _ : _ 4Q+4(p2+M2)B2V(3) 9
dg*IN 2r)y’ (p"+M7) (1 +49B,)+4pp°/N N 47'c
42 2 _hMm dop*/N\) 1 oM?
+ Ly (2 _op(RPINALL oM (3.13)
N N 4n p+M 20 0@°|N

Expanding the integrand in inverse powers of \/p2+M2, neglecting the finite terms and
performing the cutoff in the divergent ones we obtain

~ 2 2 2
2V _fyyer (2 MY ey (£ _IMY[ @7 AM]
d@°IN ‘N 4n N 4/ N 4n

h? 2 WM A?p? 2 hM L
+ - yor (9 _ ! )c—-h log [ ho®+2hov® v _tMy e M
N 4n 4n N 4n N 4n

_ang? (! 2V<3>( v _hM oM’ (3.14)
16 N 4n 29 8¢% N’ '

where ¢ is the normal-ordering constant (3.4). The expression (3.14) contains both power
and logarithmical divergences which can now be subtracted because all members of (3.14)
have the shape of (3.12). To make this feature more apparent we shall expand g, 2, oV

h
and 0>V in powers of (% - :— . Let us recall
TT
- 1 2 hMY
.= E:MW»«»(N “E)’ (3.15)
k=0
therefore
= 4 S 7.7 A\
2 k| @
- Lef® 7Y 3.1
¢ E:kz(N 4::) (3.16)
k=0
2 M — B o*  hMYV
RO) (R B LN R S e 3.17
¢ (N 4n K\N ~ 4n (3-17)
k=0
and

2 M c 2 hM\
(P _ MY L A 3.18
eV (N 4n) E,k!(N 4n)’ G419
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where
k
he= Z (l;) VDoY), (3.19)
1=0
k
B, = Z (’;) YD) eI 30), (3.20)
i=0
and
k 1
Ci = Z Z (’;) ( n’1 ) A (V1 A (V) SR (] (3.21)
I=0 m=0
2 WM
Substituting (3.16)-(3.18) into (3.14) and arranging in powers of <% - %) we obtain
T
20V, = 1 /¢ hM\
_'_"'mpz/(zl\; = 2 o (_% - 71?) {2c2V“‘“)(0)—4(k+l)cV”‘”)(O)

k=0

n2 A [ h\? 1 oM?
VEEDOY_ 2] A +2kB,_,~4l—] C Ib — — . 3.22
+ 6 ¢ (0)—#~ log i L kT 2KB;_y 16) “*|f 20 597N (3.22)

Comparing (3.22) with (3.6)~(3.9) we find the explicit formula for the next to leading
counterterms &/

2
oW = — {2c2V<"+2>(0)—4ch“‘+”(0)+ % cVEr20)

A2 2 h 2
—h?log 42‘ [A,,_1+2(k—1)Bk_2—4(1—6) CH]}. (3.33)

4. Conclusions

We have demonstrated that the next to leading radiative corrections do not destroy
the general structure of the three dimensional theory whose interaction part of the Lagrang-
ian is a Taylor expandible function of ¢*/N. In particular the induced derivative couplings
are absent to this order. We have derived the formula allowing to calculate the explicit
expressions for all counterterms.

The details will depend on the particular form of the interaction term (2.2) but it
is obvious that consistency requires (2.2) to be a polynomial of infinite degree!. Nothing
can be said about higher orders unless by no means simple calculations to the order I/N

A
1 Or of the trivial, renormalizable — @*+ —A%diﬁ form.
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will be dorie. Probably in next orders the recourse to more sophisticated methods should
be made, like improving the Green’s functions in the spirit of {6] or using nonperturbative
Symanzik’s constants [4].

Our present knowledge does not allow us to do more than raise this possibility, how-
ever our analysis demonstrates that the possible nonrenormalizable features of nonlinear
theories are suppressed by a factor of at least 1/N2, This result is independent of the partic-
ular choice of the coupling constants ¥® and confirms the possibility that the inability
of the conventional perturbative methods to deal with interactions of the form (2.2) is
only a symptom not a cause of the difficulties one usually encounters on this ground.
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