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The set P of particles is supposed to be partly ordered by an invariant ordering relation
which makes the set P a complemented distributive lattice. As a consequence, hadrons may
be regarded simultaneously as bound states of heavy unstable constituents or as particles
composed of light stable quasifree constituents, the two basic sets of constituents being in
a bootstrap-type connection. Some phenomenological implications (average quark mass,
the high energy behaviour of R(o(ete~ — hadrons)/o(ete~ — utu~)) of this way of thinking
about constituents are also discussed.

1. Introduction

A general property suggested by experiment is that of compositeness: hadrons are
built up from more fundamental objects (“‘constituents”). The great power of constituent
models consists in explaining the hadron spectrum, the general features of deep inelastic
phenomena together with many other problems of particle physics. The constituents
(fractionally or integrally charged quarks) sometimes behave like free particles but are
never observed as isolated particles: this is the main puzzie of constituent models. The
solutions offered for the “confinement” problem are still in a very speculative state.

In one of the models, suggested by Wilson [1], quark confinement is considered in
the framework of field theories with strong coupling defined on a space-time lattice. Quarks
are located at lattice sites linked by rigid strings to form string-like hadron states. The
masses of these states are obtained by adding the constituent quark and string masses.
Quarks are confined: their separation requires an infinite length of string, which has infinite
mass in the strong coupling approximation. In this approach the algebraic properties of
lattices are not exploited: the space-time lattice is only a mathematical device to obtain
meaningful results in the continuum limit.

A lattice with particles and their constituents as elements may be constructed starting
from other considerations.
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Classification of particles involves in fact the existence of two types of relations
defined on the set of particles. Building certain multiplets (based on SU(3) or other group)
equivalence relations are considered, while the fact that hadrons lie on Regge trajectories
implies the existence of an ordering relation, which partly orders the set of particles. If
in this partly ordered set any finite subset has both an infimum and a supremum, then it
is a lattice. Such a Regge-lattice bounded below was constructed in [2].

We proceed to examine the consequences which may arise from the assumption that
the set of particles, P, is partly ordered. We do not try to specify the concrete form of the
ordering relation, which depends on the properties of each particle, but we suppose it makes
possible to organize the set of particles as a lattice and that it is independent of the (inertial
or noninertial) reference frame considered.

Using the algebraic properties of the particle lattice it will be suggested that the
composite models involving light quasifree constituents and those with strongly bound
heavy constituents are in a certain sense dual representations of the structure of hadrons.

2. Particles and their constituents as elements of a lattice

Hadrons may be built up from more fundamental objects, elements of the lattice P,
if P is bounded at least at one end. If one requires (as in quark models) a finite total number
of constituents, then the lattice P must be bounded below and above too (beside other
conditions it must fulfill), that is, it has to satisfy both the minimum and maximum condi-
tions. Consequently, P has a least (denoted by 0”) and a greatest element (denoted by
»g”"). It follows that the lattice P is atomic, as well as dually atomic and that every element of
the lattice can be represented as the meet of a finite number of meet-irreducible elements
or as the join of a finite number of join-irreducible elements. (The “meet”, denoted by n
and join”, denoted by U , are the (still unspecified) lattice operations; for the terminology
and lattice theoretical results used throughout the paper see e.g. [3].)

If xe P is a hadron, then it may be represented in two ways:

X=p, U..uUp, 1
or

X =q; 0O ... N4y, 2)

where p;(i = 1, ..., m) are join-irreducible elements (structureless with respect to the
operation U ) and g;(j= 1, ..., n) meet-irreducible elements (structureless with respect
to the operation ) of the lattice P, which in the following will be identified with constituents.
We consider only irredundant representations, that is p;,, ..., p; and g;, ..., q;, are the
minimum number of constituents (“valence” or “leading” constituents) needed to specify
the hadron x. (In a redundant representation, beside the minimum number of constituents,
there is an arbitrary number of redundant constituents, which may be identified with the
“sea” -— part of constituents.)

A requirement one has to fulfill is the uniqueness of the representations (1) and (2),
which is ensured (by a theorem of BirkhofT) if the lattice P is distributive. (A thorough dis-
cussion of the join and meet representations and their uniqueness is given by Wille [3].)
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3. Valuation functions on the particle lattice and the quantum numbers of particles

A valuation V defined on the lattice P assigns to each element either a real number
or, eventually, one of the symbols +co. If @ and b are elements of the lattice, then

V(@)+ V(b) = V(a v B)+V(a N b). 3

The valuation V is called order preserving if @ < b implies ¥(a) < V(b), while V is
positive if @ < b implies V(a) < ¥V(b).

We suppose that to each exactly conserved quantum number corresponds a certain
valuation defined on the lattice P. This is a quite unusual approach, but we supposed only
that the particles are elements of a lattice and we did not try to describe them by state
vectors in a Hilbert space. This would be a further step related to the problem of represen-
tations of the lattice P. The relation of the present formalism to quantum physics has
yet to be established.

If the join-irreducible elements p, , ..., p; are atoms and the meet-irreducible elements
4, --» 4, are dual atoms of the lattice P and if they are also linearly independent, it may
be shown that for any valnation the following relations hold [3]:

i
V@ = 3 Vo)-(r- DY) @
Ve = ¥ Vig)-(-DV (), ®)

corresponding to the representations (1) and (2), respectively. Similar relations may be
written for any particle x € P if P is not only distributive but also a complemented lattice:
then each join-irreducible element p; (i = 1, ..., m) is an atom and each meet-irreducible
element ¢; (j= 1, ...,n) is a dual atom of the lattice. Moreover, all atoms, respectively
dual atoms are linearly independent, because the lattice P is distributive.

The lattice constructed in this way has a finite number of atoms, equal to that of dual
atoms (m = n) and the number of elements of the lattice P is also finite.

If ¥ corresponds to an additive quantum number, it follows that ¥(0) = ¥V(g) = 0;
in general F(0) # 0 and V(g) # 0.

The dual atom g; may be written as

9= p V.. YPiny YUPiy1 V... U P, (6)

and then
pVva=g (M
png=0, ®

pi and ¢, being complemented elements. For a nonadditive quantum number, &, which
corresponds to a valuation, it follows that

N(p)+N(q) = NO)+N(g); i=1,...,m. ®
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The angular momentum, J, may be considered as a valuation defined on P and then
we have

I = 3 Jp)~0=DIO) = 3 Ja)—(k—DI(®) (10)

which is different from the usual rule of angular momentum addition; in particular, a single
value of the total angular momentum is possible. This is resemblant to the Hund rules
from atomic physics and by analogy we may argue that the lattice P contains only particles
in the ground state. The spin quantum numbers of constituents must satisfy the condition (9)
which implies each constituent spin to be les. than or equal to the sum J(0)+ J(g). This
means that J(0) and J(g) cannot be both zero, because this would permit only scalar
particles to be elements of the set P.

Assuming that the energy E corresponds to a valuation of P, the mass of particle x
is given by

M(x) = IZ E(p)—(r—1)E(0) = JZk E(q;)—(k—1)E(g). (1D

i=iy J=i1

4. Light and heavy constituents: “preons” or a ‘“bootstrap”-type connection between
constituents?

Let us identify the dual atoms with heavy constituents called “quarks”!. Quark
confinement is achieved simply if one supposes, as usual, that M(g;) > M(x) for all quarks
q; (G = Jji» .- J), Where x denotes any particle from P except ¢;(j=1,...,m) and g.
As we have seen, P contains only particles in the ground state and then, in the classical
limit, for strongly bound heavy quarks it may be written:

M) = 5 M(g)—(k—-1E(g). (12)

=i

If one would have a quark, g,, for which M(q,) = E(g), then for a hadron x composed
from g, and an other quark, g,, results a mass M(x) = M(q)+ M(q,)—E(g) = M(q,),
which contradicts the initial assumption that M(x) < M(g,). Then we have M(q,) < E(g),
inequality which remains valid in any other reference frame, that is, E'(q;) < E’(g) because
the ordering relation is supposed to be invariant. It follows that the energy is an order
preserving valuation. As a consequernce, in the rest frame of particle x we have E(0) <
< E(p;) < M(x) for any atom p; composing x, because 0 < p; < x, i = iy, ..., i,. Hence
the constituents p; are light. The term (r— 1) E(0) in Eq. (11) plays the role of binding energy,
thus the p;’s are also quasifree because E(0) is very small.

1 This is a matter of convenience. We could identify equally well the atoms with quarks, because
the ordering relation is unknown.
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From the above reasoning it may also be deduced that the masses of particles in
the ground state are limited above by M(g). We also may write

ji=

0 x M) = Y M(q)—(m~1)E(g) < mM(q)~(m—1)M(g). (13)
1
It follows that the average quark mass, M(q), satisfies the inequalities

m—1 — ;
— M(g) < M(q) < M(g). (14)

The second inequality is a consequence of the order preserving nature of the energy valuation
function.

In conclusion, assuming that on the set of particles, P, an invariant ordering relation
is defined, which makes P a lattice and that hadrons are built up from constituents of
large masses (representation (2)), it follows that the other possible representation, (1),
involves light quasifree constituents?. Thus a hadron may be regarded simultaneously
as a bound state of heavy constituents (say “quarks™) or as a particle composed of light
quasifree constituents (say ‘“‘partons”).

The electric charge® is an additive quantity, which implies that O and g are neutral
particles, Q(0) = Q(g) = 0 and

M3
M3

op) =

1 i

Q(q:) = 0, (15)

ti
[}

i 1
as in some unified models of quarks and leptons. The constituents p; and g; must be inze-
grally charged in order to avoid fractionally charged hadrons. It was shown above that
for any hadron, x, holds the inequality: M(x) > M(p)), i = iy, ..., i,. Thus some of the
light constituents may be leptons [4], pointlike objects in the join representation. Dually,
among the heavy constituents may be heavy leptons, pointlike objects in the meet represen-
tation®.

All the particles, including heavy and light constituents, 0 and g particles, are compos-
ite objects, i.e. a kind of global bootstrap emerges. The light constituents p; and the 0
particle are pointlike with respect to the join composition rule, but they are composed
from heavy constituents in the meet representation; the dual statement is valid for the
heavy constituents g; and g particle.

In spite of the composite nature of constituents, a fundamental difference exists
between these objects and hadrons: the constituents are composite only in one represen-

2 As a consequence of the lattice theoretical duality principle the converse statement is also valid.

® We consider the baryon number as a structural characteristic of particles which is not necessary
to be strictly conserved {4-5); B does not correspond to a valuation.

4 The possibility to build hadrons from leptons was also considered by Faddeev [6] in the framework
of a soliton model, while the idea that heavy leptons may serve as hadronic constituents was examined
in [7).
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tation (meet or join), while hadrons are composite objects both in the meet and join
representations. This suggests that the lattice composition rules, “join” and “meet™, are
related to two kinds of interactions, the structure of constituents being revealed only by
a certain type of interaction (see, for example, [8]).

Note that the interaction related to the meet composition rule is a strong one, because
the binding energy (k— 1)E(g) in the second Eq. (11) has a great value (E(g) > M(x), x € P).
This ensures a relative stability to the ground state hadrons.

On the other hand, the heavy constituents are composite only according to the inter-
action related to the join composition rule, cf. Eq. (6), that is, they are built up from the
light p;’s with very small binding energies of order E(0) (see the first of Eq. (11)). It follows
that quarks and heavy leptons, as well as the g particle, are unstable and therefore hardly
observable objects-[4, 5] with lifetimes less than that of “stable” ground state hadrons.
The light constituents, including leptons, are composite only in the meet representation
and, consequently, they are particles of high stability.

1t is worth noting that the two dual sets of constituents are a consequence of the
very general assumption about the existence of an invariant ordering relation, which makes
the set of particles a bounded lattice. The bootstrap-type relation existing between the two
basic sets of constituents may be an alternative to the “preon” idea [9, 4] (see also [10]).
We suggest that p; and ¢; ({ = 1, ..., m) instead of being truly elementary constituents,
are the manifestations of some fundamental “degrees of freedom” [11], having quantum
numbers usual to particles, attributed them by the valuation functions defined on P. This
is a new way of thinking about constituents offered by lattice algebra.

5. Average quark mass and high energy behaviour of R = o(e*e~ — hadrons)/o(ete — uryp)

Many experimental facts imply that a strikings imilarity exists among the final states
in various collisions, including e*e~ annihilations [12-14]. A good example is the universal
curve of mean charged multiplicity versus available energy, which indicates that the produc-
tion of particles tends to be independent of the incident particles as the available energy
exceeds several GeV’s.

Indeed, due to the bootstrap-type connection between constituents, any particle may
be considered as a potential carrier of all degrees of freedom, because (see Eq. (6))

X=q; N.. 0qj, =(P1 V... UPjm1 UPj 41 V... UPy) N

cn(py U U Pie=1 Y Pjp+1 Y oot U Pw)s (1 # Jo)-

It follows that each constituent p; (i = 1, ..., m) may be produced (or, equivalently
each degree of freedom may be excited), when the available energy has the order of
magnitude of M(g). Then the strong binding of ¢’s provided by the interaction related
to the *“ n”’-composition rule is broken and the structure of g’s relative to the *“u ”-type
interaction becomes apparent. This leads to the formation of an unstable (the binding
energy being of order E(0)) intermediate state, consisting of all p’s, which is equivalent
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to an excited state of g particle®, ¢ = p, U ... U p,, regardless to the initial particles.
This qualitatively explains the fact that as the energy increases, the charged particle multi-
plicities for different collisions tend to a unique curve, independent of the types of colliding
particles.

From Eq. (14) and the multiplicity data one may then conclude that the magnitude
of average quark mass is at a few GeV’s®. If heavy leptons do exist, their masses would
be of the same order of magnitude.

) o(e*e” — hadrons)
In the framework of the parton model the ratio R = - depends
(efe™ — prp)

on the charged constituents. Experimental results indicate R~ 2.5 in the lower energy
region, followed by an increase of R between 3.5 and 4.5 GeV to R ~ 5, which is usually
attributed to the opening of new (higher mass) quark-antiquark production channels.
In the higher energy region presently available R remains roughly constant at this value.
From the possible connection between the multiplicity data and average quark mass
shown above, it seems that in this higher energy region the value R = 5 already includes
the contributions of all constituents. Therefore we expect that there will be no further
increase of R even at higher values of available energy.

The high degree of generality of the experimental results discussed above, requires
the use of very general theoretical arguments, perhaps like these based on lattice algebra.

6. Conclusions

Assuming that on the set of particles, P, an invariant ordering relation is defined,
the set P may be organized as a complemented distributive lattice. As a consequence,
hadrons may be regarded simuitaneously as bound states of heavy unstable constituents
or as particles composed of light stable quasifree constituents. This gives a possible solution
to the confinement problem.

All the particles, including heavy and light constituents, are composite objects.
The hadrons are composite particles in each representation. The light constituents are
pointlike in a representation, but are composed from heavy constituents in the other
representation; the dual statement is valid for the heavy constituents. The bootstrap-type
connection existing between the two basic sets of constituents may be an alternative to
the “preon” idea.

The way of thinking about constituents outlined in the paper shows that each particle
is a potential carrier of all degrees of freedom and qualitatively explains the fact that at
high energies the charged multiplicity curves tend to a unique curve regardless the initial
particles.

5 'We have taken into account the idempotency of lattice operations and the properties of complemented
distributive lattices [3].

S A more precise statement is difficult to give, because the multiplicity data are still affected by large
errors.
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From the possible connection between average heavy constituent mass and charged
multiplicity data, it may be concluded that heavy constituents have a mass of the order
of several GeV’s. This also suggests that there will be no further increase of the ratio
R(o(ete~ — hadrons)/o(ete~ — p*p~)) at higher energies.
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discussions and for reading the manuscript. We thank Dr. T. Toré and Dr. N. Avram
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