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QUANTUM STATISTICAL CORRELATIONS
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The influence of Bose-Einstein statistics on pion production is studied in the frame-
work of an uncorrelated jet model. Significant positive short range correlations of like
pions are found. They are in good agreement with experimentally observed correlations
in the azimuthal angle. An increase of the strength of such Bose-type correlations with
increasing transverse momentum is predicted. Isospin invariance is shown to produce some
Bose-type correlations between unlike pions too. They should be particularly pronounced
in several decay channels of y mesons.

1. Introduction

In the present paper we will discuss some aspects of quantum statistics in multi-
particle production. This analysis has been stimulated by recent experimental results
on azimuthal two-pion correlations. In the case of like pairs (n*rn* and n—n~) the two-
-particle distribution shows a rather pronounced peak at small rapidity separation 4y and
small azimuthal angles ¢. No such effect is found for unlike pairs (z*n-). As we shall see,
this is a natural consequence of the statistics of the pions, i.e. Bose-Einstein statistics.
This interpretation is widely accepted now. One should also say, however, that the operation
of Bose-Einstein statistics in production processes is not really well understood. The
reason is the lack of a unique understanding of strong interaction dynamics.

Some attempts [1-3] of incorporation of Bose-Einstein statistics start from an analogy
with radio-astronomy, the so-called Hanbury Brown-Twiss effect [4]. In this case an ex-
tended source randomly emits identical particles (photons or, in the case of interest here,
pions of equal charge). If they are observed by two separate detectors intensity correlations
will be found. This effect is called second-order interference. It is caused by a path ambiguity
due to the identity of the observed particles. There are two indistinguishable ways for
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the two particles (emitted simultancously with nearby momenta) to reach the two detec-
tors [5]. This yields an interference term which is constructive in the case of bosons. The
observed interference pattern depends on the spacetime distribution of the luminosity
of the source. Due to the discussed path ambiguity second-order interference builds up,
roughly speaking, after the emission from the source. In this way even a random emission
process leads to correlations. But in general, there will be additional effects due to ”internal”
correlations of the source. In radio-astronomy there is no such effect (distant points on
the surface of a star do not know from each other). In hadronic collisions, however, the
sitnation changes drastically. The wave length of the emitted pions and the radius of the
interaction region are now of the same size, and correlated emission may become a signi-
ficant (or even the dominant) effect. Such internal correlations will in general depend
on the details of the production dynamics. In this case the observed phenomena cannot be
reduced to a path ambiguity between source and detectors, i.e. to a simple quantum mecha-
nical effect.

A rigorous treatment of Bose—Einstein statistics would have to take into account the
requirement of permutation invariance of strong interactions and the space-time develop-
ment of the production process in a unique way. Such a demanding analysis is not the
aim of the present paper, however. It seems to be a step forward already to explore the
consequences of Bose statistics in the framework of reasonable dynamical schemes leaving
away their space-time properties. This point of view will be justified by some results of
the present paper. Studying an uncorrelated jet model with Bose statistics significant
effects of kinematical and dynamical origin will be found which are not present in a simple
second-order interference scheme.

The influence of Bose—FEinstein statistics has been particularly studied in the frame-
work of statistical models, probably starting with GGLP [6]. The analysis done in the
present paper is based on a recent detailed calculation of the level density of an ideal
relativistic quantum gas [7, 8]. In order to apply these calculations to high energy hadron
collisions we additionally incorporate a transverse momentum cut-off. This model is
formulated in Chapter 2. In Chapter 3 a phenomenological analysis of short range azimuthal
correlations of like pions is performed. There is strong support for the interpretation that
the observed effects are a manifestation of Bose-Einstein statistics (see also Refs [9-11]).
In Chapter 4 consequences of the interplay between isospin invariance and Bose-Einstein
statistics are investigated. It is proposed to search for Bose type correlations in ¢ decay.
In Chapter 5 our main results are summarized. Some experimental possibilities are dis-
cussed allowing a better understanding of the operation of Bose-Einstein statistics in
multiparticle production and a distinction between different schemes.

2. An uncorrelated jet model including Bose statistics

The influence of Bose-Einstein statistics can be rather easily studied in the framework
of statistical models. In any statistical model the distribution functions of the produced
particles are determined by the available level density. The uncorrelated jet model is
a model of this type. In the usual formulation the level density is given by the phase space
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where N is the total number of particles, @ is the total four-momentum and a transverse
cut-off f(pi) is taken into account.

Strictly speaking, this gives a reasonable description only in the Boltzmann limit,
i.e. in the high temperature-low density limit. For most applications this is sufficient, but
identical particle correlations due to Bose-Einstein statistics are missed in this case.
A treatment of this problem is given in the following.

The phase space available for an ideal gas of N identical bosons of total
four-momentum Q is given by

Qn(Q) = Try P2. 2

P2 is the projection operator ensuring energy-momentum conservation
P2 = d*ae™%%Y(a), U(a) = ei“é. 3
(wf (@). @) 3

The trace Try refers to the subspace of given particle number

TrN A= Z 5(N— Z np) <{np}}AI{np}> (4)

{np}

[}y = H % 10y, ®)
n,!

The subscript p of the occupation number n, indicates the single particle momentum
state. Bose statistics is taken into account by using the appropriate commutation relations
of the creation and annihilation operators

+

[ap’ ap'] = 5pp" (6)
In order to calculate the expression (2) one essentially has to evaluate a vacuum expectation
value. Using the following transformation property of the creation operators

U(a)a, %~ '(a) = €*a; N
one obtains, after some calculations [8], the representation

-y ey o Y[ LA o
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with

The set of parameters {L,} = {L,,L,, ...} takes on all non-negative integers
L,=0,1,2,....

In fact, only a finite subset contributes because of the d-function.
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So far, we have not explicitly indicated which momentum states p (with which densities)
are available for a single particle. Now we specify this single particle momentum density
introducing a cut-off in the transverse momentum

Y. - | Ba*pf(p?)é (p* —m?). 9)

4

This is the dynamical input of this model. Performing in Eq. (8) the configuration space
integration d*a we obtain the final result for the level density Qy(Q)

Ln
Qu(Q) = Z} (N— 3 nL)[o(Q- Y ¥ np;,)

{Ln L £
Ln
1 4 _Ii 2 2 2
X — d°p;, —f(p’ ;)0 (pj,—m"). (10)
L n
n Jn

L,=N, L,=0

The term with

gives the Boltzmann contribution (1) usually called phase space. It dominates in the limit Q2
large, B large, N fixed (compare the discussion in Chapter 3). In general, more terms of
the cluster decomposition (10) are relevant. If L, = 1 for some n the corresponding particle
momentum contributes » times to the total four-momentum, and there are effectively
n particles in one and the same momentum state. Such virtual states will be called Bose
clusters. Introducing the cluster momenta ¢, = np the procedure of obtaining the total
phase space can be phrased in the following way: Besides of the particles themselves one
has to count all virtual states (Bose clusters) of mass nm, transverse cut-off f(g? ,/n?) and
coupling parameter (“effective volume”) B/n®. The parameter L, denotes the number
of such n-particle Bose clusters.

The calculation of the particle momentum distributions according to the level density
(10) is most efficiently done introducing a generating functional F[Q, N|@]

Ly
_ 1 3 @ )
F{Q’NI‘P]"QN(Q)Z(S(N Z"L")f‘s (Q 22""’"
{Ln} n Jn

Ln
1 B N
x I I i I I d*pj, — S0 ;08 (5,~ M (P,,)- (1)
n Jjn

With a n-particle Bose cluster we have to associate a product of n test functions at the
same momentum p

¢"(p)

one for each particle in the cluster.
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The I-particle momentum distribution functions are found as functional derivatives
of the generating functional (11) taken at ¢ = 1

H(zE) N S Flo.NI$] (12)
I R A A T Ea

In particular, we obtain the single particle distribution

v B E Ov-x0-Kp)

2E = (13)
d*p 21Q)
and the two-particle distribution
iy BI@LOfL) Y Qyox-x(@-Kp~K'py)
2E2E; 5——>— = e
d°p,d’p, Qn(Q)
Bf(p? 1)2E 8P, — p,) 2. (K=1)Qy_x(@—Kp))
+ bt . (14)

N

The sums over K(K’) are actually limited by the total particle number and the available
energy. We emphasize that the phase space terms Q,,(Q’) in Eqgs (13), (14) are given by
the cluster decomposition (10) and not only by the Boltzmann contribution (1).

Eq. (14) contains terms of two different types. The first one corresponds to the emission
of the two observed particles from different Bose clusters of order K and K’, respectively.
d-like contributions appear if the two particles come from one and the same Bose cluster.
It is a significant result of the present analysis that these terms contain only one trans-
verse cut-off factor. In this case one has to expect Bose-type correlations increasing with
the transverse momentum.

3. Analysis of like-pion azimuthal correlations

The model developed in Chapter 2 predicts the existence of pronounced positive
correlations between like pions nearby in momentum space. Some observable effects
should result, e.g. some angular correlations or an enhancement in the two-pion effective
mass plot near the threshold. In fact, corresponding experimental observations have been
reported (compare e.g. Ref. [21] and further references given there). The topic of this
chapter will be a discussion of correlations in the transverse angle ¢. This should provide
some understanding of the order of magnitude of a possible Bose effect, and there are
interesting data to be understood.
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Before turning to the model calculations we should briefly discuss these data. In
order to enable some high energy approximations we will content ourselves with studying
some data in the energy range 40 ... 200 GeV/c [9, 12-15]. The quantity experimentally
most easily accessible is the azimuthal asymmetry A defined as

/2
EIER
A= /2 (15)
dN
f a5

dN/d@ is the two-particle azimuthal distribution. For large rapidity separationdy = |y; —y,|,
the asymmetry appears to be flat with a value of about

008 40 GeVc,
AR ~ at
0.05 200 GeVl/e.

It is found to be independent of the charge combinations of the pion pair (compare
Figs 1 a, b). Such a behaviour is expected in the framework of an uncorrelated jet model.
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Fig. 1. Azimuthal asymmetry as function of Ay = y;—y,: a) xp — an-+x at 40 GeV/c [9], b) pp — mr+x
at 200 GeV/c [13]
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If the rapidity difference is small (4y < 1) the asymmetry shows a peak for unlike
pairs and a small dip for like pions (Figs 1 a, b). In the case of unlike pions this effect is pro-
bably caused by resonance (or cluster) production. In order to understand the correlations
of like pions better, less integrated quantities are required. Fig. 2 displays the dependence
of the divided correlation function R~— on 4y for different ranges of the transverse angle ¢.

2 O<d< i
05 — 8 _ nih<d<3ibn
A 3lbncden
=
< 04
o
x 02
o$
ok g4
a [y
F-y a
-02 1 } | 1 1
-2 -1 1 2

by

Fig. 2. Divided correlation function R— as function of Ay for different ranges of the azimuthal angle ¢ [14]
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Fig. 3. dN/d$ for like and unlike pairs [9]

The striking feature is a narrow peak (of a correlation length of about 0.4 units in rapidity
[14]) seen for small ¢ angles only. Such a peak in the ¢ distribution 1s also observed at
40 GeV/c (Fig. 3). Moreover, the dependence of the asymmetry on the transverse momentum
separation dp, indicates that this peak is enhanced at small 4p, (compare Figs 4 a, b).

Such a behavior, a peak at small 4y, @, Ap for like pions is qualitatively expected
from quantum statistics. In the framework of the uncorrelated jet model of Chapter 2
it is caused by the d-like contribution to the two-pion distribution (14). In fact, this -peak
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will be smeared out because of the uncertainty relation and the smallness of the hadronic
interaction volume

2E,0(py—p3) = 20(y1—y2)8P(P 1 —P .1 2)
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Fig. 4. Azimuthal asymmetry A(dpl) as function of Ap,; = ip Lal= ip 12llr @ 102 GeV/e {12],
b) 40 GeV/c [15]

From Fig. 2 we learned already that dy, should be of the order of 0.4 at 200 GeV/c. A very
rough estimate yields a corresponding uncertainty of the longitudinal momentum
Opy ~ {uy >0y, ~ 150 MeV/c

which looks reasonable. A similar value for dp is expected. In order to perform a more
comprehensive analysis, some high energy approximations will be used bringing the
expression (14) into a simple and manageable form. In the extremely relativistic limit
the phase space integrals (1) behave like [16]

A A 1 2\N~2
Qn(Q) ~ const In(Q ) o (log @%) an
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independent of the particle masses. The transverse part is given by
IvQ,) = 5<f11 dp Bf(pLNEPQ ~ L b, (18)
Applying this approximation to the representation (14) we obtain the simple expression

dN i pL1+P. 2\
E\E, P ~ [Bzf(Pil)f(Piz)+Bf<(lM) )D(Ay, Di1> P12 ¢)]

3p1d3p2 2

- - 1
XIN~2(pJ_1+p_LZ)(1+0(B—l’5é—Q'§>)9 19

where D(4y,p,1,p, 2, ®) is given by Eq. (16). The contribution of a K-particle Bose
cluster is of the order of

(Blog 0*)7%.

At very high energies only two terms will survive: the Boltzmann term and a term corres-
ponding to a configuration with only one two-particle Bose cluster which just yields the
two observed pions.

At present energies the approximation (19) is not a very precise one. Therefore,
some non-asymptotic effects are taken into account introducing an additional normaliza-
tion factor W, (which should not be very far from one, however)

dN PLit+P. 2V
E1E2 d3 d3 ~ [Bzf(pi 1)f(P?Lz)+ Wle( = 2 _-L‘2> > D(Ay’ P,Ln pJ_29 ¢)]
pidp;

PypiPi2 T 4p
X {1- ———=- — A4 cos ¢). 20
( b 2 (20)

In Eq. (20), an additional approximation [19]

- - PiiPi2 ® ;g
I._ + ~ll- =t 4 21
N 2(PJ_1 P_Lz) ( <P.L>2 ) COS¢) (21
with
ALR ~ __1__ (22)
N

has been used. Strictly speaking, this holds for large N and not too large p, (p ,/{p,>*
only.

A further inspection at Fig. 2 shows the presence of a small background term enhanced
at small 4y and not strongly dependent on ¢. It might be a manifestation of some kine-
matical rapidity correlations [14], of the interplay of diffractive and non-diffractive channels
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[17] and of additional dynamical correlations expected, e.g., in the framework of independ-
ent cluster models [18]. This effect is small, and we do not try to investigate it in more
detail. But it will be taken into account in a phenomenological way adding a contribution

1 _ (1—y2)? Pi1P
_ (3y2)? BZ 2 2 1 _ 11¢ 12
N e F(pLf(p12)

W, T 4, cos ¢) (23)

<P_L>2 2

to Eq. (20). We choose W, = 0.25, y, = 1.3, 4, = 0.15. Our results are not sensitive
to the details of the parametrization (23) since its overal effect is small.

We still have to specify the cut-off function f{( pi) and the coupling parameter B. In
order to be able to perform some integrations analytically we use

) = — e’ @4
with
1 -
e 6.5(GeV/c)~2. (25)

B may be determined considering the total average multiplicity

{n) ~ Bf2log Q> (26)

B~ 6 is a reasonable choice.

Now we are prepared to look for the data again. The parameters we still have to
determine are the transverse momentum uncertainty dp, and the weight factor W,.
A rather good agreement with the data shown in Figs 1—4 is obtained using

W, = 0.5, dp, = 250MeV]c.

The model calculations are shown in the correspording figures.

Some comments are in order. First of all, with one and the same set of parameters
6y, 0p,, W) data from different experiments at different energies (40 ... 200 GeV/e
can be described. It would be interesting, however, if a more refined analysis using data
of higher statistics would exhibit some energy dependence.

Since the rapidity correlation length 8y, & 0.4 [14]is found to be rather small, the
considered quantities, e.g. the azimuthal asymmetry, should show a significant 4y depend-
ence at small 4y. This suggests a more detailed experimental study of this 4y dependence
using bins as small as possible. The same can be said about the ¢ and dp, dependence.

The data shown in Figs 4 a, b allow only a rough estimate of dp . Its value dp
~ 250 MeV/cis in agreement with earlier estimates [10]. It might be a bit too large, however,
to be comfortable for a Bose statistics interpretation. Thus one cannot exclude that other
dynamical effects contribute to the observed short range correlations of like pions.
Resonance production, not properly taken into account in the present analysis, is a possible
candidate. At low and medium energies p production influences (via sum rules) like pion
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correlations too (compare Ref. [20]). Moreover, high mass resonances may contribute
directly. In our opinion, it seems unlikely that such a mechanism could offer an ex-
planation of the discussed ¢ distributions. However, it might somewhat screen Bose
statistics correlations. This problem deserves further investigation. An extreme point
of view would be to consider Bose statistics correlations only between directly produced
pions (and between identical resonances). This would be correct if hadronic resonances
were Very narrow.

So far, the striking feature of the present model, i.e. the increasing strength of the
Bose effect with increasing transverse momentum has not been tested explicitly. The consi-
dered quantities are not really sensitive to this property. A simple possibility to explore

Ay<i
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Ap, <015 GevVic
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Fig. 5. Azimuthal asymmetry A(p,) as function of pL= , Ap; < 0.15GeV/e [12];

this model, — — — Ref. [15]

this dependence is the study of the azimuthal asymmetry as a function of the typical
transverse momentum p,; [12]

- Pri1tp;2
pu=TE

This quantity 4(p ) is plotted in Fig. 5 for small Ap, where Bose-type correlations should
be significant. Unfortunately, the available data do not allow to discriminate between the
present model and a behaviour of the type [10, 15]

dN
— ~ f(} f(P%2) A+ DAy, pL 1 12> B)) @7

E\E, 4———
! 2d3P1d P2

not yielding an increase of the Bose effect with increasing p, . In the available range of p
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both models are in rough agreement with data (Fig. 5). Data at higher Ei values
(1...2 GeVJe) including ¢ distributions in dependence of p, would be of great interest.
In fact, such an analysis of the p, dependence would also require more reasonable model
calculations. The approximation (21) is not justified at large p,. Also the ansatz (24)
is not a very realistic one and tends to overestimate Bose type correlations at large p | .

At the moment the experimental situation is not conclusive. The discussed data
neither support nor disprove an increase of Bose statistics correlations with increasing
transverse momentum.

5. Consequences of isospin conservation

In the previous chapter internal symmetries have not been taken into account explicitly.
Such a treatment will be given now. As we will see the inclusion of isospin conservation
does not change the behaviour of the like-pion correlation function (at least in leading
order). However, a new and interesting effect arises. Isospin conservation leads to quantum
statistical correlations also between unlike charge states of pions. This has been noted
already in Ref. [6]. If only charge conservation is taken into account this effect disappears.
There are two questions to be answered in this chapter:

(i) Why have such unlike-pion Bose correlations not been observed so far?

(ii) Are there possibilities to detect them?

We will proceed in a similar way as in Chapter 2. The level density of an ideal gas of Nynt,
Nyn® and N_n— is given by

QN+N0N-(Q2, 1) = TfN+NgN_PQP§, (28)
where (I, i) is the isospin of the N-pion gas. P; is the isospin projection operator

o QD)

! 8n?

dRD{R™YHYZ(R). (29)

R and %(R) denote isospin rotations and the corresponding unitary transformations,
respectively. The Dj; are diagonal elements of the rotation matrix belonging to isospin I.
The basic new feature introduced by the isospin transformations is the mixing of creation
operators a,, of different charge (r = +, 0, —)

U(R)a,;, %" '(R) = Dj{R)a;, (30)

with the pion isospin T = 1. In distinction to the transformation law (30) abelian symmetries
(corresponding to energy-momentum or charge conservation) lead to phase factors only
(compare Eq. (7)). This mixing of different charges has the important consequence that
the cluster decomposition of the level density (28) contains Bose clusters of like as well
as unlike pions. For instance, there are ntn*, ntn, ntn°, ntn®z~ Bose clusters etc. We
refer to Ref. [8] where this cluster decomposition has been discussed in detail.
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Using the explicit expression for the level density given in Ref. [8] we can calculate
the corresponding two-particle distribution functions for several charge combinations.
In order to study their qualitative behaviour the leading contribution (compare the dis-
cussion in Chapter 3) should be sufficient. We obtain expressions of the type

dN"'

E\E, m ~ {Bzf(Pil)f(P_ze_z)"f‘ W;I,:z(N+’ No, N—)Bf(pil)ZElé(s)(l;l ";2)}
1 2
X QN—2(Q‘P1 —D3) 3D
with
N =N,+Ny;+N_
and

tlv t2 = +’Os .

The weight coefficients W}/’

12N+, Ng, N_) are the result of isospin conservation. We find

(1 (ti, 1)
++,00, — —

G'(N,—=1,No+1,N_-1)
G~Ii(N+s N07 N—)

1— G“(N+s No—ls N—~)
- G”(N+= NOa N~)

where the G'(N,, N,, N_) are generalized Clebsch-Gordan coefficients (see, e.g., Ref. [22])

I+1)
8n2

I/Vllliz(N+9N09N—) = 9 1—

+ - (32)

+0, -0

G'(N+, No, N_) = dRD{(R™") {D1, (R {Doo(RIF™{DL (R}~ (33)
First of all, we note that in the case of identical pions (r+nt, n°z® and n—n~) the results of
Chapter 2 remain valid. This also justifies the analysis of Chapter 3.

We now estimate the order of magnitude of quantum statistical effects for unlike
charge combinations taking the n*n— distribution function as an example. In Table I the
corresponding weight coefficients W _(N,, N,, N-) are given for (1, i) = (0, 0), (1, 0), (1, 1).
In general, they are small and positive (apart from particular channels to be discussed
later). If the total pion number N as well as the number of charged pions N, becomes
large they are of the order

H (N4, Ny, N_) ~ O(1/N?) (34)

independent of the isospin. For charged-neutral combinations a behaviour

WE(Ny, Noy N2) ~ = -

2
NTNTa TOUNY (35)

is found.
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In this case an inclusive study of unlike pion distributions will not show significant quantum
statistical correlations

Wb 2 Nou N ) tneutve S 0 (1_1) . (36)
og Q
At best one can expect an effect of the order of some per cent compared with like-pion
Bose-type correlations. Such an effect should not have been seen. The expected effect
might be somewhat larger for some low multiplicity channels but in this case a statistical
treatment is doubtful.

TABLE 1
Some weight coefficients Wi (N, No, N_) (compare Eq. (32))
Ny No N_ I=0 I=1,i=0 N; No N_ I=1 i=1
1 2 1 1 —1 2 1 1 0
0 0.17 0
—_— 2 2 1 0.05
1 3 1 -1 1 3 0 2 0.07
1 2 0.05
2 1 0.00
1 4 1 1 -1 3 1 2 0.02
2 2 0.05 0
3 0 3 0.07 0.02 2 4 1 0.02
3 2 2 0.02
1 5 1 -1 1 4 0 3 0.03
3 0.00 0.02
3 1 3 0.02 0.02

Strictly speaking, we have studied only N-pion systems, produced e.g. in NN annihila-
tion. However, our conclusions remain valid for other types of high energy hadron-hadron
scattering. In this case the isospin weights (33) have to be replaced by more general expres-~
sions [22] taking into account the presence of one or two isospin one-half particles (nucleous
or kaons). The quantum statistical correlations between unlike pions found in this way
are not more pronounced than those of pure pion final states. Thus the model is not in
contradiction to the fact that Bose type correlations between unlike pions have not been
identified so far. Nevertheless, it would be of basic interest to find such correlations. An
outstanding possibility is suggested by the present model. For channels containing only
one n+ and one 7- (and an arbitrary number of 7°) the weight coefficients W™ _(N., No, N-)
are not small but

WE_(1, N, D) = (=DM, 1=0,1, i=0. 37

The most obvious idea would be the study of such channels in pp annihilation. In this
case, however, I = 0 and I = 1 initial states both contribute. Moreover, the number
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of 7 is hard to estimate, and one would have to add channels of different number of =°.
This mixing of different isospin states and of exclusive channels will probably destroy
Bose statistics effects completely.

However, a promising possibility of detecting such an effect has been opened up
recently with the discovery of the I = 0, G = —1y (3.1) particles. As discussed, the decay
channels

p - ata=+ns

are of particular interest. In this case the number of n° is automatically odd (apart from
a small background) because of G-parity. Thus, since the isospin is zero, significant negative
mr— quantum statistical correlations are expected (compare Eq. (37)). They should disap-
pear for the non-resonant background at neighbouring energies.

This experiment probably offers the best chance to find such correlations. In any
case, the observation or non-observation of an unlike-pion Bose effect would essentially
help to clarify which mechanism is indeed responsible for the observed like-pion correla-
tions.

5. Summary and discussion

Throughout this paper we have emphasized that significant quantum statistical
correlations of like pions are expected in high energy production processes. In fact,
several effects have been reported indicating an enhancement of pions of equal charge
in momentum space. We have especially discussed short range correlations observed
in like-pion azimuthal distributions. We take these effects as evidence for the existence
of quantum statistical correlations.

The Bose-type effects calculated and studied in this paper are mainly of kinematical
origin, i.e. are determined by the available phase space. As an interesting result, we found
that these “kinematical’’ correlations alone are of the right order of magnitude to under-
stand the striking features of the discussed like-pion ¢ correlations. One should also say,
however, that these data only allow a rough estimate of the quantum statistical contri-
bution. Several questions remain open. This concerns in particular the sensitivity of the
Bose effect to the details of the dynamics and the space-time development of the production
process. This problem deserves further experimental and theoretical studies. Below we
discuss some effects which could help to determine the importance of several mechanisms
and to distinguish between them.

i) The only dynamical input of the model discussed in Chapter 2 is the transverse
momentum cut-off. It leads to a significant consequence: an increase of the strength of
the Bose effect with increasing transverse momentum (compare Eq. (14) and the discussion
in Chapter 3). Of course, such an effect may be destroyed by further dynamical structures.
This would be the case, e.g., in several cluster models. Moreover, such an effect is not
expected in a simple second-order interference scheme. Thus, it provides a sensitive test
for the discussed uncorrelated jet mode! with Bose statistics.
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if) A rather different behaviour of yy correlations is expected in different schemes.
For n°z° pairs, any reasonable model will predict quantum statistical correlations similar
to those of charged pions. However, the n° are not detected directly but are the (dominant)
source of the observed y quanta. Corresponding to the supposed n° correlations a yy
correlation function can be calculated. This quantity should be compared with data. Ex-
perimental deviation from the correlation function computed in this way would be a direct
indication of a second-order interference contribution. It builds up after the emission of
the y quanta, i.e. after the n° decays. If such a contribution would be dominant, the resulting
yy Bose peak would be more narrow than in the case of charged pions. The opposite would
happen if quantum statistical correlations would only operate on the level of pions. Only
such correlations are taken into account by the uncorrelated jet model discussed in the
present paper.

iif) n*n~ Bose-type correlations would be a further interesting effect. As we have
discussed in Chapter 4 isospin symmetry of strong interactions should lead to some unlike-
-pion quantum statistical correlations. y decay is the prominent candidate to find them.
No such effects are expected from pure second-order interference. This is not a question
of our ignorance of the isospin group in such a scheme. In fact, there is no room for it.
The condition necessary for the appearance of second-order interference is that the two
particles are identical in the sense that the detector cannot distinguish between them.
But it clearly can distinguish between an* and a n~.

In our opinion, an experimental study of these problems seems to be relevant and
should be done.

I am indebted to Drs R. Kirschner, M. Klein, M. Le Bellac, R. Nahnhauer, A. Para,
G. Ranft, J. Ranft and E. V. Shurjak for discussions and comments. Furthermore, I thank
N. G. Faddeev for showing me some data prior to publication.
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