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TREATMENT OF THE OXFORD-RUTHERFORD TYPE MODEL

By P. ZENCZYKOWSKI
Institute of Physics, Jagellonian University, Cracow*
(Received June 20, 1977)

A method of calculating trajectory parameters in the Oxford-Rutherford type model
is presented. The poles, mixing angles and residues of the fand f’ trajectories are calculated
at different values of momentum transfer ¢ in the SU(3) symmetry breaking model. The
contribution of different regions of phase-space can be directly examined. The contribution
of configurations with overlapping clusters builds the deviation from planar trajectories
for large positive .

2. Introduction

The dual unitarisation scheme [1-4] developed in the last three years has provided
a new understanding of the dynamics of hadronic phenomena. So far many results in this
approach have been obtained only in the one-dimensional approximation [5, 6].

This approximation, in which one neglects transverse degrees of freedom (or rather
assumes them to be integrated over), was thoroughly used in explaining the behaviour
of physical processes near the momentum transfer £ ~ 0 [5], [6]. On the other side in
most of the calculations with full z~-dependence which have been done by now one neglects
taia effects or the j-dependence of the kernel representing the reggeon loop, or both [6, 71.

In the Oxford-Rutherford model [2] both these effects are properly taken into account
but the resulting model is complicated and the numerical results obtained from subtracting
comparable quantities carry a large degree of uncertainty [8]. The main difficulty lies
in determining the parameters of lower lying trajectories. In fact one cannot calculate
important parameters even for the trajectory next to the leading one [8]. It would be
therefore interesting to have a simplified treatment of the Oxford-Rutherford scheme
in which after taking cluster overlap (OVC) and j-dependence of the kernel into account
one could also examine where and to what extent no cluster overlap (NOVC) and j-indepen-
dent kernel approximation is correct. The knowledge of the j-dependent kernel is of course
of great interest. Knowing the kernel explicity we could find with good accuracy the poles,
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residues and mixing angles in the SU(3) symmetry breaking case. There will be no problems
with lower lying trajectories. Inclusion of baryonic exchanges would also be straight-
forward.

In this paper such a simplified treatment of the Oxford-Rutherford model is proposed
and discussed. We find that for large regative t the approximation neglecting configurations
of overlapping clusters is good, whereas for large positive ¢ it is just this region of the s-chan-
nel phase-space which gives important corrections to the planar trajectories. At r = 0
we are roughly midway between these two extreme situations.

The rest of the paper is organized as follows. In the next section we find a j-dependent
kernel in the Oxford-Rutherford type model [2]. Section 3 is devoted to the evaluation
of the parameters for f, f* trajectories in the SU(3) symmetry breaking case. Section 4
contains discussion. Summary of the results is presented in the last section.

2. j-dependent kernel in the Oxford-Rutherford type model

Let us consider the one loop diagram with twisted reggeon exchanges (Fig. 1) and
the corresponding amplitude taken from Ref. [2]
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Fig. 1. One loop diagram with twisted reggeon exchanges

The triple-regge vertex function Giyy is parametrised as in Ref. [1, 2]

[Giu(t; 11, )] = Gt (1+R 31—:2) l ’, )]
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4¢*N ,
where G(f) = ég———); exp (—«t). In Eq. (1) ay(2;) = af +at, N = number of flavours and
n

a.(t) is the trajectory of the reggeons in the loop.
Performing the transverse momentum integration we obtain

1 . G(ty 2= alk
—disc, L = dsydsy, —= —=—exp{—|—|t
i N a./s|p| 2|p
J;+Vls_2<\/§
§18 s \2
X €Xp <.._2a _%_2> <___) SO;I(‘)S?(O, (3)
s 18,
s
where a = In [R+ —»-], k is the CMS-momentum of the cluster 5, and p is the
§183

s
CMS-momentum of one of the initial particles. We put |—| = 1, |p| = l/é- for simplicity.

Now we introduce new variables xy, x,, z

Y... -
s, = €%, s, =€ o == MR 5= @

and from Eq. (3) we get

+ o

1 ~ G()e"
1 disc, T = TO0C f dx,dx, jdzé(Y—x,—xz—z)
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x;,xz>0 -0
t -
exp {(—2~ —2e ‘) In (R+e’)}

x exp {x(et; (1) — 1)+ x5(22(1) ~ 1)+ (200 — 2)z} ®)

In(R+¢€%)

Writing the delta function in the Fourier representation and performing X, x, integrations
we obtain in j-representation

+ 00
Lat SO L [ g 1 1 1

Lag, ) = — =

S oL N 2n To1=ik ikt 1—o,(0) ik+1—ay()

+ oo

dz 20 ~2—ik)z+ 2"’)ln(R+’) 6)
-2 — —2e ;.
m(RI &) exp 4 (205 ik)z 5

For z > 0 we close the k-contour in the lower part of the complex k-plane, whereas for
z < 0 the k-contour has to be closed in its upper part. It is easily seen that for z < 0 the
contribution from region Im k > 0, lk! - oo is zero. Similarly one can show that the
only singularities to be taken into account for z < 0 are the poles at ik = o,()—1,
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ik = a,(t)—1. Factorising off reggeon propagators (j—a,)"*, (j —a,)~! we have for the
kernel the following expression:

w

L(j, o0, 1) = “G(t){f 92 ol @e0—1-j)+ (f— —2¢7* ) In (R+¢)
o N In (R+¢) t 2
0

@

J=ay(®) dw
ay()—ay(t) JIn(R+e”
0

" exp I:(ocl =20+ Dw+ (-zt- —2e“’) In (R+e“”)]

e az)} . 0

Knowing explicitly kernel L(j, «, ) the problem of what the cylinder influence is on the
original EXD poles can be immediately solved. Let us discuss now the importance of
various terms in Eq. (7) at j = ay(¢). From Eq. (7) we see that for j = «, rising the contri-
bution from the configurations of non-overlapping clusters (NOVC) (z > 0) decreases

t
(the essential factor in the integrand behaves like exp ( - (a‘l’+ E) z )) On the other

side the configurations of overlapping clusters (OVC) are then dominant (the j-dependence
of the integrand is like exp (yw)). Needless to say this feature is quite general and does
not depend on the specific model we have chosen here. At ¢ & 0 we are roughly midway
between these two extreme situations. For the purposes of the next section we will now
introduce a shorthand notation for Eq. (7)

Ko(j, af, t) = nG(t) ,[l B (R+e )exp [(2&2— 1—j)z— (2e_’— %) In (R-i—e’)] .

Ky, o8, 1) = nG(r) f xp [(j—2a2+1)w— (2e"— 3‘) In (R+e‘W)] . ®

In (R+ - ©
so that
J—ay(t)

., 0:t=K .3 oat ———"— K ,o,t+ 2 .
NL(j, ayg, t) o(J> o1 )+a1(t)--oz2(t) (21, a, O+ (a; 2 ay)

3. The cylinder shift for f, f' trajectories in the SU(3) symmetry breaking case

The cylinder mixes |R) = %(Ipﬁ)+|nﬁ>) and |S) = |A1) states in such a way
that at the new poles j = a,(¢), j = a,(¢) we have the states
[1> = cos x;|R) +sin x|,

12> = cos 1, |R) +sin x,|S). ©
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As the kernel is j-dependent the mixing angles do not fulfill the relation y, = % + 5.

The equation for the full propagator F is

F = P+PLF, (10)
where
San(‘) 0
P = [O sas(!) (11)
in the [R), |S) base, and ag ¢(f) = af s+a't. We expect F to have the form
B(ay, t) cos®y 5™ B(xy, 2) cos 4 sin x,5™
+ B(a,, 1) cos? x5 +B(az, ) cos y, sin x5
F= (12)
B(as, £) sin y, cos xi8™ Play, 7) sin® yy5™
+ B(atz, 2) sin x5 cos x28™  + (2, 2) sin? xp5™

Writing Eq. (10) in the |R), |S) base and using the method described in the previous
section after comparing the residues at j = a,(f) and j = «,(f) we obtain:

a;—og = Lgp(ot)+1g xilsg(),  o;—ag = Lgg(oy)+ctg x;Lsr(ay), (13a)
where

LRR(a) = % {Ko(“, ags D+K (e, a?b t)};
V2 0 0
LSR(“) = —? {Ko(“s ax, t)+K1(a9 Ok, t)}a

Lgs(a) = £ {KO(a’ dg, D+K, (o, dg, t)}- (13b

In Eq. (13b) a x 5 are the intercepts of the leading planar trajectories |pp, |pAY, |11).
The functions K, K, are defined in Eq. (8).
The position of the new poles can be easily obtained from the equality

ayz = 3 {ag+og+ Lep+Lsst ‘/(“R + Lypg — s — Lgs)* +4L5z}, (14)

where Lgg, Lsg, Lss are given by Eq. (13b) (with an appropriate a), and the sign +(—)
corresponds to the pole o (e,).
The mixing angles are given by

tg 1 = o; — g ~— Lggp(e;)
' Lsg(e)
To calculate residues (in the one-channel version of the Pomeron equation — Eq. (10))

we treat the second part of the kernel which is due to the OVC contribution as a linear
in j approximation of the form K,(j, af, t). For the matrix case the use of the forms

13)
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Ki(j, a2, 1), af = af x5 instead of their linear counterparts is rather convenient. This

i)
may be done if —a—j-Kl(j, af, 1), does not differ too much from (ap = og.s)

K (o, of, ) — K (oyy, 0, 1)
O — Oy )

For not very large j, t where the calculations of regge trajectories and mixing angles are
reliable this is indeed the case. Clearly, the replacement of the original OVC-part of the
kernel by K,(j, «, t) has no influence on regge trajectories and mixing angles, which are
calculated without this substitution. Thus the residues can be calculated from

6LRR . OLss
el

BTG, =1-1%

oL oL oL
(O‘R'*‘LRR““S-LSS)( *E - “_SS) +4L 5%

0j dj K9 6
V(g + Leg—as— Lss)* +4Lse
with the sign +(—) for «;(x;) respectively.
The derivatives of the loop matrix elements are
oL G, ) d .
I.KR = %— '—:KO(Ja algb t)+ -".Kl(]’ a?b t))’
dj dj oj
0Lgg \/i 0 o 0 0 )
— ==K .: , t — K -3 s 0],
o 3 \oj o(Js ok, B+ PY 1(Js 2k, )
oL 55}
_]§§ = %( KO(]’ aSa t)+ ] l(ja (Zg, t)) » (17)

where

0 z .t .
% Ko(j, 2, t) = —7nG() J‘dz lm) exp {(Zag— 1—j)z— <2e - -2—) In(R+e )} s
0

0, w t w
'a—; K, (j, a,‘f, 1) = nG(¥) fdw mw) exp {(j—ng-l— Dw— (2€w—~ E‘) In(R+e )} .
o]

(18)

With the help of the formulas (14)-—(18) the poles, mixing angles and residues can be
directly evaluated on a computer. The important technical point is that one needs to cal-
culate only one-dimensional integrals, and there are no problems connected with subtracting
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comparable quantities. We have done numerically the calculation for the following values
of the parameters:

g=70, k=413, N=3 R=15

for f and f’ trajectories. The results are shown in Fig. 2—S5.

4. Discussion

In comparison with the original Oxford-Rutherford model the calculations presented
here overestimate slightly phase-space contribution. In Fig. 2 we have visualised the
regge trajectories in two cases: a) with and b) without the contribution of overlapping

a
plenar trajectory

P ploner trajectory

Fig 2. Planar and shifted regge trajectories in the SU(3) symmetry breaking case for the following values

of the input parameters: ¢} = 0.5, e} = 0.35, 2% = 0.1, N = 3, g = 7.0, » = 1.3; solid lines — whole
phase-space contribution, dashed lines — only configurations with no overlapping clusters allowed

clusters. It can be seen that the deviation from planarity for large positive ¢ is mainly
due to the inclusion of the OVC contribution. The ,-trajectory passes near the physical
Jf-meson but, as in Ref. [8], the influence of the cylinder correction is overestimated. This
is probably due to the fact that the parametrisation of the triple-regge vertex function was
obtained from the planar bootstrap programme only at momentum transfers close to zero.
However, the dominance of the OVC contribution at large positive ¢ will not be altered
by other forms of G(¢). By requiring the planar bootstrap to be fulfilled at each value
of 1 it should be possible to determine the triple-regge vertex function in a more reliable
way. (Configurations with overlapping clusters should then of course be considered in
the planar bootstrap equation.)

In Fig. 3 the quark content of the bare Pomeron is shown in both cases a) and b).
We notice that the OVC configurations are not properly taken into account forz > 0.5+1.0,
leading to the ill-behaved quark content of the f pole. Similarly in Fig. 4 the amount
of nonstrange quarks in the f pole is visualised. The behaviour of the curve at t smaller
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Fig. 3. Mixing angle for the shifted f trajectory; solid line — whole phase-space contribution, dashed
line — only configurations with no overlapping clusters allowed
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Fig. 4. Nonstrange quark content of the shifted f pole
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Fig. 5. The residues of the fand f* poles; solid lines — whole phase-space contribution, dashed lines — only
configurations with no overlapping clusters allowed
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t
than zero is due to the proximity of the regge-regge cut agxg(t) = 209—1+ 5 to the

shifted f pole. As the original triple-regge vertex function G(¢) in the Oxford~-Rutherford

model does not vanish at the non-sense points the loop integral Lyz becomes divergent
at a,(¢) = agg(t) giving tg xy, = —oo and leaving only a strange component in the wave
function of f.

Fig. 5 shows the residues of fand f” trajectories. The rather abrupt fall in the magnitude
of the f’ residue at ¢ smaller than zero is caused once again for the same reason as the
behaviour of tg x, in this region. The rise of the f residue with growing # is due to the
rather well-established r-behaviour of the triple-regge vertex function G(#). Indeed,
in a simple SU3) symmetric model we have

. af(. g’(t) ! 0] !
P Dly=e {aj(’ “(0) j—m(t)) ,} (1 ¥ (ocl(t)—oeu(r))z) )
which decreases when g(¢) increases.

We have also done the calculations for w and ¢ trajectories (the only difference when
compared with the f; f' case is the change of sign of the right hand sides in Eqs (13c) and
(17)). The results obtained confirm the well-known fact that the intercept of the w trajectory
without introducing baryon exchange effects lies too low. To get a reasonable picture of @
and @ trajectories a sizeable amount of baryon exchanges must be incorporated into the
above scheme. In fact such a calculation has been done in the one-dimensional approxi-
mation [9]. In the method presented above inclusion of baryon exchanges is straightforward
and does not involve any difficulties, so one should be able to perform the z-dependent
analysis of the importance of baryonic effects on the trajectories w, . To get better results
than those presented above a triple-regge vertex function with non-sense zeroes extracted
explicitly should be used. We have not attempted to repeat our calculations for Ghy,
with non-sense zeroes built in as first the planar bootstrap equations for ¢ away from
t ~ 0 should be solved.

5. Summary

We have presented a semi-analytic method of computing reggeon parameters in the
Oxford-Rutherford type model. The method allows us to calculate all physically interesting
quantities in the SU(3) symmetry breaking case for f, f* trajectories with a straightforward
extension to include baryon exchange effects when discussing the C = —1 sector.

The configurations of overlapping clusters of the s-channel phase-space are recognised
to be very important for large positive momentum transfer 7. In fact, had we neglected this
contribution, the f~trajectory would have passed almost through the position of the physical
A, pole. Better knowledge of the triple-regge vertex function is still required. It is conceiv-
able that in the planar reggeon bootstrap equation the contribution from the configurations
of overlapping clusters will increase with growing ¢, thus reducing effectively in this region
the triple-regge vertex function.

The author would like to thank J. Kwiecifiski for stimulating discussions.
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