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The magnetic moments of the vector mesons and the transition magnetic moments
of the vector-pseudoscalar mesons have been computed assuming that the magnetic moment
operator transforms as the (24, 3) component of the SU(10)-symmetry and has been com-
pared with the similar results obtained in SU(8). It has been found that for both charged
and uncharged particles with non-vanishing hypercharge the values remain unchanged.
However, for the uncharged mesons with ¥ = 0, C = C’ = 0, the results differ consider-
ably. For example the magnetic moment of y particle is given by u(y) = (64/25)u(0®)
in this case in contrast to the result of SU(8):u(y) = 4u(e®).

1. Introduction

Since the discovery of J/y particle [1], intensive theoretical and experimental works
are being carried out to determine whether or not the concept of charm has earned a per-
manent foothold in the domain of particle physics. As days are passing by more and more
physicists are siding with the bandwagon of charm. With the discovery of more reso-
nances it is not whether charm quantum number exists but it is a question how it exists
and which model does it favor.

e . . (ete~ — hadrons)
Considering the rise in the experimental value of R = although
(u*pu~ — hadrons)

for the time being a quark model with 4-quarks [2], with usual three quarks u,s,d
postulated by Gell-Mann and an additional quark ¢ with new quantum number, charm,
C = 1, can explain most of the new resonances, however quantitatively the question is
far from being settled. In addition to that a further rise in R with higher energy raises
the question, is the total number of flavor, which is now four, enough [3}? Many physicists
are still of the opinion that this question is still wide open. Theoreticians are already
constructing models with quarks having more than four flavors. We must not however
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forget that in order to retain the fermion character of the baryons all the quarks have
to possess color [4] as the additional characteristics. But the physicists postulate that
baryons and mesons are supposed to be color singlets in the classification of the fundamental
particles. We would restrict ourselves only to the question of flavor and how far they do
effect the physical quantities.

Among the recent models with more flavors, the simplest but also interesting one
is that proposed by Achiman, Kollar and Walsh [5] on the basis of five quarks. We are
aware of the fact that the ¢—c’ model mentioned in their paper necessitates a pair of
heavy leptons in order to remove the triangle anomaly. We are however tempted to see
how such extra flavor effects other experimentally determinable quantities. In this model
the particle ' is considered to be ff combination of a new quark f (which we would call
fancy) with fancy quantum number C’ = | and its antiparticle f. We must mention here
that the present consensus prefers o' to be the radially excited state of cc combination,
but since we intend only to check on the models with higher flavors as the alternative,
we would just ignore this apparent experimental favor for the radial mode of y as ¢'.
There are other models where six quarks play more fundamental role. They postulate the
equality of the basic quark flavors and the number of leptons. Although they are attractive,
however they are equally hypothetical as the model proposed by Achiman et al. [5]. We
would restrict ourselves only to their five quark model, particularly the one which they
referred as the ¢—c’ assignment.

Recently the author [6] has calculated the magnetic moments of the vector mesons
and the transition moments between the pseudoscalar and the vector mesons, by assuming
that the magnetic moment operator transforms as (15,3)-representation of SU(8) which con-
tains SU(4) x SU(2) as subgroup [7]. The motivation of this paper is to extend the symmetry
to SU(10), which contains SU(5) XSU(2) as a subgroup. The internal symmetry is assigned
through SU(5) and the spin indices are expressed through SU(2). The mesons are classified
in the 99-representation of SU(10). Both y and ¢’ are supposed to belong to this represen-
tation. Assuming now that the magnetic moment operator to transform as (24,3) represen-
tation of SU(5) x SU(2) (C SU(10)), we derive the ratios of the magnetic moments of the
mesons. We have assigned the quark contents of the mesons to be same in both models
and concluded that the results of the Y = 0 and C = C’ = 0 mesons are different in two
models. We are tempted to conclude that this difference in the magnetic moment values
should be one of the many criterions to decide, which model is experimentally favored.

In Section 2 we briefly explain the SU(5) and the ¢~ ¢’ classification of Achiman et al. [5]
and introduce tensors to represent particles in the SU(10)-symmetry. In Section 3 we compute
the magnetic moments of the vector mesons and the transition moments between vector
and pseudoscalar mesons. We discuss the results in Section 4.

2. SU(10 )-classification

We assume that the particles are classified without introducing intrinsic spin by
SU(5)-symmetry. In addition to the usual 4-quarks of SU(4), we introduce following
Achiman et al. [5] a new quark with charge @ = 2/3, Y = 2/3,C = 0 and C’ = | where C’
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is a new quantum number, say, fancy. All other quarks have C’' = 0. The particles now
satisfy the extended Gell-Mann-Nishijima formula

Y
Q=I3+5+C+C’. ¢D)
The mesons then belong to the 24-representation of SU(S) and in terms of SU(3)
x U (1) x U,(1), where the first U,(1) symmetry belongs to the charm quantum number
and U,(1) is associated with the fancy quantum number, we find

24 = (1+8,0,00+(3,1,00+(3,0, D+(3, —1,0)

In equation (2) the symbol (m, n, g) means that it belongs to the m-th representation of
SUQ3) with C = n and C’' = q. The new particles in (3, 0, 1) and (3,0, —1) are indicated
by the same symbols as their counterparts in (3, 1, 0) and (3, — 1, 0) respectively with an
additional suffix f”. The particle (I, 1, —1) is denoted by C°® and (I, —1,1) by C°.

The mesons in SU(10)-representation are assumed as usual to be made up of quark
and antiquark combination. In terms of SU(5) x SU(2) characterisation, this can be
expressed as

10x10 = 1499; 99 = (1+24,3)+(24, 1) 3)

where (m, n) means m-th representation of SU(5) and n-th representation of SU(2). The
99-representation is associated with Young’s tableau [211111111]. We can represent the
particles in 99-representation with a tensor By pcperonrs Where 4 = (a, @), B = (B, b) etc.
The greek alphabet is used to indicate SU(5) indices and the latin one for SU(2). Hence
o-s run from 1 through 5 and a-s from 1 through 2. The tensor B is antisymmetric with
respect to the interchange of the indices within the curly bracket. Using (3) we
can express B as

1

K
B{ABCDEFGHI}J = \/(—9—-') &48cDEFGHIKD 15 )]

where ¢,pcppreurx is the Levi-Civita tensor in ten dimensions. For 845 we put

By = Ve as+ _1‘ P*seX0s &)
NG
where V% and P% are defined subsequently. The vector mesons are given by
Vll 9+ K** 5*0 D"::o"
o~ V% K*° D*” D}~
[V5]=|K*" K* V3 F*" F{™|, ©)
D*® Dx* Pt yt, C*°

DF® DY FFt C*° v,
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where
vl = 53\‘/"2 5 -t@rvee,
V2, = 33’% - _\é_’/_% -1 (@+yp+y),
Vi=— \”/252 +5(@g—-p—9y),

o= t(-V2o—g+ay—vy),
V3 = 3 (~J20—¢—yp+4y).

(62)

(6b)

(6¢)

(6d)
(6¢)

In assigning the proper quantum numbers we have retained the usual meaning of

the ¢° = —

_ J

y’ = ff. We have also required that V%, must be traceless.
The pseudoscalar mesons are given by

—

PY, n* K* D° D?]
n~ P2, K° D™ Df
[P]=|K” K° P, F~ F{
p°® pt F* P44 Co

D} D F C° P

In equation (7) we have set

° n o0
Pli= —4—4— o 1
! J2+J6+2+2J3 V5
®  n n 1
Pf= - — 4 — + — ° —,
Y N I BN
2n 0 e
P3= —_ = e e
3 2723
P — LUEVEL "
‘T 2 2 57
PPy = -2’ +

(wu—dd), ¢ =ss and p = cc of SU(4) and included the y'-particle as

)

(72)

(7v)

(7)

(7D

(7e)
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The assignment of the tensor components has been done keeping in mind that the
deﬁnition of the usual particles attributed in the SU(4)—model has been kept intact. Thus

(uwu—dd), n = —= 5
Jz J \/
+dd +ss+cc). We have introduced another meson 5’ \/_ (uu+dd + ss+cc+ff). Again

P*,=0.
In expression (5) we have also used the intrinsic spin function y,, to represent spin
one particles. They are given by

(uu+dd—2ss), 5, = (u+dd+ss—3cc) and n’ = d(uu

X11 = Uy, = X21 = \/~ Ugs Y22 = U_;. ®

The s are normalized to one. y, stands for a state of spin zero particle and also normalized
to one.

3. Magnetic moments
The most general current we can construct out of B and B can be written as
I = ”I%BA’%BA"’ﬂZ%AB%A’B’*‘ 805'4'4%3(: 5. 9
The tracelessness condition yields
Bi+p2 = 10 go. 10)

Following Bég, Lee and Pais, we assume that the magnetic moment in the low frequency
limit transforms as (24, 3) component of a tensor and M can be expressed as

M = poJ* 0% 1 Q% 1)

The meaning of 7 is as usual (see for example reference [6]). The operator Q is the diagonal
charge operator: Q% = g,8% with ¢; =g, = g5 = 2/3 and ¢, = ¢; = —1/3.
Substituting (9) in (11) we get

M = M(VV)+M(PP)+M(VP)+M(PV), 12)
where
M(T/V) = nu'O;; : (EEZ>1[#x{vVF}ala+”y{T/VD}al«]Qaa” (13)
M(PP) = 0, (14)
_ 1 . . - , - ,
M(VP) = ‘7—2 Holt * <X1UXo> [I‘x{ VPF}a ¢+ ﬂy{VPD}a a]Qaa" (15)

— i L . — . — .
M(PV) = 7 pot - {xo0x1) [ PVeY* o+ 1, {PV}" . ]1Q%- (16)
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In the expressions (13) through (16) the abbreviation {VV;}*, stands for the

F-current given by
{VVe}e = ViV V0V,
and {VVp}*, for the D-current without the trace term as shown below
Vo), = ViV, +VEV2,
We have also used the abbreviations
He=3@i—n);  py =3 (uit+p2),
o1 = 17a bas
<J_C1;Xo> = X6, 8aos
and
<J_C03X>1 = J—Cosababdxad-
Now defining u(X) =<(X;J= 1,7, = {MX;J=1J,= 1) we find

25 wo) = p(e®) = —%5 W) = H u(y) = 25 u(y) = — w(K*°)

= ~3 u(K*®) = % w(D*®) = % u(C*®) = % u(DF°) = § W(C*®) = % ponsn,

pe®) = p(D**) = u(F**) = u(DF*) = p(Fe*) = ¥ nons[ —3u.+u,]
and

p(e™) = w(D*7) = w(Df ") = W(K*7) = % pons[3u.+n,].

{17

(18)

(19)
(20)

2y

(22)

(23)
24

(25)

The V'~ V transitions are defined as {X|p| YY) = (X; J= 1, J, = 1| M|Y;J = 1, J,=1)
and the results are tabulated in Table 1. In the table we have also requoted the moments
of the individual particles defined previously as (X u]X) = u(X). All the magnetic moments
there are given in the units of u(e®). For example, the transition moment between 3’

and ¢ has to be read as {@|u|yp"> = —Fu(e?).

For the P— ¥V transition, we define (X|u|V> = (Y|p|lX) = (X;J = 1,J, = 0|M|Y;
J=0,J, = 0> where X is a vector and Y is a pseudoscalar meson. Using equation (15)
we find in the units of u(g®) the transition moments of the neutral particles with ¥ = 0,
I, =0, C = C’ = 0 as shown in the Table II. Thus for example the moment between

o o 722
n'* and ¢’ is given by {¢'|uly") = — 5://3 u(e®).

For the neutral particles with ¥ # 0, the transition moments are given by

~(D*u|D% = —(DF%uIDP> = 2¢(K**|u|R®) = /K*°|plK®> = —(D*°|u|D°)

= —{C*¥|C% = —<BFOuDPy = —<(C*|u|C% = 4 /2 p(e®).

(26)
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TABLE |

moments between the uncharged vector bosons withY = C

= C’ = 0 in units of u(®
w e° ¢ v ¥
21 9 134/3 173 17v3
™ 25 5 25 25 25
. 9 342 3v/2 3v2
0 5 ! TTs | T B
5 5 5 5
¢ 13v3 3v32 22 2 2
23 s 25 25 25
1743 3v2 2 68 32
4 25 s 25 25 25
, 17v3 342 2 32 68
V4 25 5 25 25 25
TABLE II

Transition magnetic moments between the uncharged vector and pseudoscalar
mesons with ¥ = C = C’ = 0 in units of u(p°

@ o° # y v
. 9v2 3v2 6 6 6
x _Zve Ve 2 hd 2
5 8 5 5 5
2 = 643 243 2¢/3
n ~= ~ V6 — — —
543 5 5 5
, 17 3 v2 16v/3 34v/2
1 5 5 5 5
17 - V6 8v6 24/6
- — — /3 — i —_——
e 53 v 5 5 5
" 34 6 2v2 28v/2 2v2
" 545 V5 5v35 545 53

The transition moments between the negatively charged particles are as follows:

e luln™> = KK* {ulK™) = {D*"|u|D™> = (F*"{u|F~)

= (D} IuIDs > = (F{|pulFey = —2u(e”).

995
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Similarly for all positively charged particles the ¥ —P transition magnetic moments are
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given by
Coluln™y = (D*|uD*) = <K**|u|K*) = (F**|p|F*)

= (F{ T uWFy = —J2 (™). (28)

In all above transition moments we must stress finally that the condition (X|u|Y)
= {Y{ulX) is satisfied in every case.

S. Concluding remarks

Extending SU(8) to SU(10) symmetry, we have derived magnetic moments in terms
of three parameters u{0°), u(o*) and u(p~). The results obtained do not change the magnetic
moments of the vector mesons with ¥ # 0 that have been obtained by the author in a pre-
vious paper [6] for SU(8) symmetry. However the magnetic moments for the vector
particles with Y = I, = C = C’ = 0 the results are essentially different, although we have
retained the quark constitution of the similar particles in both SU(8) and SU(10) the
same. The transition magnetic moments similarly stay unchanged between particles with
Y # 0. But the moments between the uncharged particles with ¥ = C = C’ = ( changes
essentially. Thus for example, in case of the vector meson y the result u(y) = 4u(0®)
as quoted in [6] changes into u(y) = 2 u(e® as we find from equation (23) or Table L.
Similarly the transition moment between n° and v is given by {n®|u[y> = 0 in SU(8),
whereas in SU(10) we get from Table IL, (=°|ulyp> = $u(¢®). However we must not
forget to mention that if the magnetic moment of ¢® comes out to be zero, then there
would be no way to choose between the two symmetries because the moments turn out
to be identical in both symmetries. If on the other hand u(g®) # 0, the experimental ratio
u(w)/u(e®) may indicate the type of symmetry we have to choose from out of different
alternatives. Hence we find it important to measure the ratio of the magnetic moments
of i and ¢° which eventually help us to fix the number of flavors a symmetry has to have.
In the above consideration we are assuming that any other type of symmetry breaking
which has any influence on the magnetic moment operator would be essentially small
effect, which might not be always true. We are trying to study the impact of such symmetry
breaking effects separately as an extension of this work.
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