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A simple model of charge symmetry breaking nuclear forces is related directly to charge
asymmetry in the low energy 'S, nucleon-nucleon scattering parameters. Using this model
charge asymmetry in the effective range theory parameters is related to the charge asymmetric
term in the nuclear binding energies of heavy nuclei, Ej(N—Z). The role of the short-range
two-body correlations induced by the dominating charge independent nucleon-nucleon
potential is studied and is found to be very important when calculating E,. The value of E,
is found to be very sensitive to the charge asymmetry in the effective range while being
quite insensitive to charge asymmetry in the scattering length. The use of experimental value
of E; in the study of the charge symmetry breaking component of nuclear forces is
proposed.

1. Introduction

The knowledge of the magnitude of the charge symmetry breaking (CSB) nuclear
forces has fundamental importance to nuclear physics. In the study of possible CSB
component of nuclear forces one considers the n—n and p—p interactions, switching off
“external” electromagnetic effects (Coulomb p—p force, vacuum polarization, interaction
of magnetic moments). The CSB of the N—N interaction, purified of the “external”
electromagnetic effects, may then follow from “internal” electromagnetic effects, which
are related to the electromagnetic properties of mesons, mediating the N— N interaction.
The most important of those internal” electromagnetic effects, leading to CSB, is electro-
magnetic mixing of the isoscalar and isovector mesons of the same spin and parity [1].
Other ”internal” electromagnetic effects, such as radiative corrections at the nucleon-
-nucleon vertices and the pion-photon exchange potentials, are expected to be an order
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of magnitude smaller than those resulting from meson mixing [2, 3]. Generally, the CSB
potentials derived from electromagnetic meson mixing are strongly dependent on assump-
tions concerning various quantities entering the theory (e.g., coupling constants) and are
thus rather uncertain [1, 4-8].

Direct experimental investigations of CSB nuclear forces relate to the 'S, low-energy
N—N scattering. The recent value of the n—n scattering length, which can be used with
some confidence -is a,, = —(16.24+0.6) fm [9, 10]. The corresponding, >purged” of
external electromagnetic effects value for the p—p system is a‘:p = =~ (17.1£0.2) fm [9, 11].
The S, effective ranges are much more difficult to measure than the scattering lengths.
The purged” value ryp = (2.84+0.03) fm [9-11]. As yet, measurements of r,, do not
have an accuracy sufficient for a really meaningful comparison with r;’p. Generally, the
value of r,, resulting from the three-body analyses of scattering experiments (e.g.,
n+d — 2n+p) is much more sensitive to the model used than a,, is [9, 13]. Thus, the
value r,, = (2.4+0.4)fm quoted in Ref. [9] should be treated with caution, being in
fact the mean value of several results, obtained from the three-body analyses of n+-d —
— 2n+p experiments. The differences between these results (e.g., 7y, = (3.1540.7) fm [12]
and r,, = (2.131£0.4) fm [13]) reflect the model dependence of the extracted r,, value.

Summarizing we may say that the recent results concerning the 'S, scattering lengths
suggest a,, > a,,, with da = a,m-—a,!fp = (0.9+40.8) fm. On the other hand, the present
experimental results for r,, are not conclusive and cannot yield reliable information
about the sign and the magnitude of Ar = r,m—rffp.

The comparison of low-energy n—n and ’purged” p—p scattering parameters seems
to be the most sensitive and the most reliable method for studying the CSB nuclear forces
(cf. however Refs {14, 15]). Due to the difficulties in the extraction of the low-energy n—n
scattering parameters, however, it is believed, that the most reliable (but indirect) evidence
for the CSB in nuclear physics comes from the theoretical analyses of the Coulomb energy
differences of T = 1/2 mirror nuclei [16-25]. All these analyses suggest, that the ~overall”
n—n interaction is slightly more attractive than the p—p one and phenomenological CSB
nuclear forces were introduced to account for the observed Nolen-Schiffer anomaly [26]
in the Coulomb energy differences of mirror nuclei [16-20, 21-25]. In most cases [21-25]
(with exception of *H—*He pair where the calculations were performed using variational
techniques with realistic trial wave functions [16-18] or Faddeev equations with simple
separable N—N interactions [19, 20]) the contribution to the binding energy from the CSB
nuclear force has been calculated with single-particle wave functions which lead to un-
correlated twobody wave functions at smail internucieon distances. Thus, the phenomeno-
logical CSB potentials of Refs [21-25] should be considered rather as effective CSB
nuclear forces, which may be quite different from the bare CSB N—N interaction. The
latter is expected to contain a very short-range component resulting from the electro-
magnetic 0% —w®—@° mixing.

In the present paper the relation between charge asymmetry in low-energy N—N
scattering parameters and charge asymmetry in the nuclear binding energies of heavy
nuclei is studied vsing a simple model of CSB nuclear force. The procedure leading to the
determination of our model of the CSB potential is presented in Section 2. In Section 3
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we describe the calculation of the charge asymmetric term in the nuclear binding energies
of heavy nuclei, E(N—Z), and relate da and 4r to E,. Section 4 contains discussion and
conclusions.

2. CSB nuclear forces and charge asymmetry of low energy N— N scattering parameters
The CSB component of nuclear forces has the usual form [2]

Vess = [ +77JU csp(F) (1)
where 7,|p> = |p) and 7,|n) = — |n). Our phenomenological Uggg is spin independent
(Wigner force). The nuclear n—n and p—p interactions are of the form

Voo = v=2Ucsps
V,p = 0+ 2Ucss, @

where v is the charge independent conponent of the N— N interaction. The function Ucgg
may be related directly to the charge asymmetry in the 'S, low energy scattering parameters.
Treating the CSB component as a small perturbation of v we obtain, to first order in
UCSB [27]

[ee]
N M, 2
Ada = ap,~a,, = —4 77 a Ucsp(Pug(r)dr, 3)
o
N M
Ar = rop—rp, = —16?2— Ucsa(Puo(ryu(rdr, )

0

where u,, u; are calculated from the / = 0 radial wave function, generated by the S,
charge independent potential v'5° = ¥,

d%uq

M
52_ +k2u = —'h—z— Vou, (5)

uo(r) = “(kz’ Nhe=o» () = u(k?, Mlx2=o.

0
ak*)
In Eq. (3)a is the scattering length generated by V.

Results of theoretical investigations in which CSB nuclear forces are derived from
the electromagnetic meson mixing suggest that Ucsy consists of two parts. The short-
-range part results from the vector meson mixing (¢°— w®—¢° while the long-range part
follows from the mixing of the pseudoscalar (n°—#®) mesons. We shall incorporate these
features into our phenomenological CSB force, defining

Ucess = Vyexp (—nur)/ngur + Vi exp (— nur)/nyr, Q)
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where typical values of n, and n, are n, = 6 and n, = 1 and p = muo/hc = 0.685 fm-1,
On the other hand, the theoretical knowledge of the strengths of these two Uggy compo-
nents (even of their signs) is very uncertain [4-8)]. Hence, ¥; and ¥V, will be treated in the
subsequent considerations as phenomenological parameters. To put the strengths of the
long and short-range components on a comparable basis, we shall use the representation

Vs = cxs(rls/“L)3l)0s VI = al(nl.u')sta (7)

where v, will be fixed arbitrarily at the value vy = 1 MeV fm®. Using Egs (3) and (4)
we obtain one-to-one correspondence between the charge asymmetry da, 4r and the CSB
force (6) (for fixed n; and n,). Namely, the parameters «, and «;, may be calculated for
fixed 4a and 4r from the system of two linear equations

"'nllu'
da = —4 — h2 a LOZ a(np)? J‘ uldr,

i=s,l

M 5 e—niur
Ar = —16 Wz U o () " ugudr. ®
1]

i=s,l

Using experimental valnes of da and Ar one would be able to determine unambiguously
the spin independent Ucsp, Eq. (6). As discussed in the Introduction, the experimental
knowledge of 4a and 4r is, unfortunately, rather uncertain. We shall use (cf. Introduction)

Aa = (0.940.8) fm. ©)

This proposed interval for the charge asymmetry in a should be, however, taken with a grain
of salt because of the model dependence of the analyses which yield the experimental
value of a,,. In the case of Ar the experimental situation is much worse. In view of the
very strong mode! dependence of the experimental results for r,, (cf. Introduction)
we shall tentatively investigate —0.4 fm << Ar < 0.4 fm.

In our calculation the functions #, and u,; have been generated by the 1S, Reid soft
core N—N potential [28]. The results for o, and o are shown in Fig. 1. Generally, the o’s
depend very strongly on 4r, while their dependence on da is quite weak. This characteristic
feature is due to big a? factor appearing in Eq. (3).

Precision of formulae (3) and (4) has been checked numerically for each Uggp. The
examples illustrating the precision of the approximate formulae (3) and (4) are given
in Table I. In Table I several input values of 4a and Ar, used in the calculation of the
strength parameters «, and o, (we assume s, = 6 and n; = 1) are given in the first column.
The calculated values of &, and a, are shown in the second column. The CSB potentials,
determined by «;, «, and n, n, using Eq. (8), yield exact values of 4a and 4r shown in
the third column. Generally, the precision of the approximate formulae (3), (4) is better
than 29 for |4r| < 0.3 fm.
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Eqgs (8) imply (for fixed ng and n,) linear dependence of o’s on Aa and 4r. We have
(cf. Ref. [34])

&; = CI,-AT+CZ,-Aa, (1())
where
a(xi aoc,-
ch- = ‘—“‘) s C2i =\ » (11)
04r ) 4r=0 04a) 4=0
da=0 Aa=0

and i = [, 5. For ny, = 6 and n, = | we obtain
cis = —15947fm™!, ¢, = 0.098 fm™ !,
¢y = 11512 fm™%, ¢y = —0233fm™ 1, (12)

Fig. 1. The dimensionless strenght parameters ag and «; (for fixed da) versus Ar. The hatched areas
include all ay(dr) (i = I, s) straigth lines corresponding to 0.1 fm <4a<1.7 fm. The plots correspond to
ns=6and mp=1

TABLE 1

Strength parameters o and «; (dimensionless) of the phenomenological CSB potentials (n; = 6 and
m = 1) and the values of da and Ar (in fm) and 48, (in degrees) calculated from these potentials.
For the explanation see the text

Input Exact Adg
&y 4]
da Ar Aa l ar 100 MeV | 200 MeV | 300 MeV
0.90 0.05 —-0.710 0.365 0.90 % 0.05 —0.3 —0.4 —-04
0.90 ~0.40 6.466 —4.815 0.88 —0.40 —33 —35 —-3.7
1.70 0.20 —3.024 1.905 1.73 0.20 1.8 1.8 19
1.70 -0.10 1.760 —1.549 1.71 —-0.10 —-0.7 —-0.8 -=0.9
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The insensitivity of o’s to the value of 4a is reflected by the fact that l¢, /e, ~ 150 and
lenfeal ~ 50.

In order to discuss the charge asymmetry in high energy N—N scattering, implied
by our CSB force, we calculated the *S, phase shift, 8y, at several laboratory energies,
using V' = v+ Ve, where v was the 'S, soft core potential of Reid. The charge asymmetry
in &g is defined as

A(SO = 5()rm - égpp‘ (13)

The values of 46, for several Ve and at E, = 100 MeV, 200 MeV and 300 MeV
are shown in the last three columns of Table I. Because of the lack of direct n—n scattering
experiments no possibility of experimental estimate of the magnitude of 43, at medium
and high energies exists. The charge asymmetry 49, is bigger than the experimental error
bar in 5§pp, quoted in Ref. [29], for [4r] S 0.1 fm. On the other hand, 46, corresponding
to |Ar] < 0.1 fm is smaller than the experimental error bar in 5&,,, [29].

Finally, let us mention that the phenomenological CSB potentials, usually assumed
to be monotonic functions of r of a rather long range (~ 1/p) yield the da values which are
inconsistent with present estimates of this quantity. For example, the CSB potential of
Shlomo and Bertsch [23] introduced in their study of the Coulomb energy differences
of the ground states of ®Ne—180 and *?Ti—*2Ca mirror nuclei yields 4a = —1.77 fm
and Ar = -~0.01 fm.

3. Charge asymmetry in the nuclear binding energies and role of the short-range correlations

The Liquid Drop Model mass formula gives (in the limit of 4, Z — oo, with simulta-
neous switching-off of the Coulomb interaction between protons) the “experimental
formula” for the binding energy in nuclear matter at normal nuclear density (¢ = go =
0.17 nucleons/fm?),

E/A = Ey+E?, (14)

where the neutron excess parameter, @ = (g, @,)/¢ = (N—Z)/A4 is assumed to be small,
so that powers of « higher than quadratic are neglected. Extensive semiempirical analysis
based on the Liquid Drop Model yields E, = —15.68 MeV and E; = 28.06 MeV [30].
However, the functional form of E, Eq. (14), corresponds to strictly charge symmetric
nuclear hamiltonian. The presence of (small) CSB components in nuclear hamiltonian may
imply existence of an additional charge asymmetric term in EfA4, of the form E,x, studied
recently by the present author using theoretical CSB nuclear forces in nuclear matter
calculations [31]. Up to now the term of this form has not been included in the semi-
empirical mass formulae, but existing results obtained with the use of charge symmetric”
parametrizations seem to indicate that E, should be small. The calculations where (very
uncertain) theoretical CSB potentials have been used lead to the value E, ~ —0.2 MeV [31].

The charge asymmetry parameter in the nuclear binding energy, E,, seems to be the
simplest manifestation of the possible CSB effects in the nuclear many-body (4 > 1)
systems.
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Our phenomenological CSB potentials will be used for the calculation of E, within
the framework of the Brueckner-Bethe-Goldstone theory of nuclear matter [32, 33].
With our simplifying assumption concerning the spin independence of Ucsg, we shall
thus obtain a direct link between the CSB in low energy N—N scattering parameters and
the CSB effects in many-nucleon systems.

We shall calculate E, to the first order in Ucgg, accounting for the short range correla-
tions which result from the strong CS N~ N interaction ». Considering only the CS inter-
action v, we calculate the CS reaction matrix XK° in nuclear matter,

K® =040 —Qe— K°. (15)

The full reaction matrix K = K°+ K is the solution of
Q
K = v+ Vesp+(v+ Vess) > K. (16)
We introduce the correlated (in the presence of v) two-body wave function ¥ and the

defect wave function { = ¢ — ¥ where @ is the wave function of the free two-body motion.
Using the identity

(P[v|¥) = {D|K°|¥) an
we obtain, to first order in Vg [21, 31]
(D|Kcsp|P) = {P|Vesp| D) + L Vsl D — 2P| Vsl (18)

The first term in the right-hand side of Eq. (18) is the first Born approximation to Kcsg,
while the second and third terms give correction resulting from the short range two-body
correlations induced by v.

At the density ¢ related to the average Fermi momentum ki by o = 2k3/372 we
obtain

E,= —-3p 0_\? drr* F(r)U csa(1), (19)
o

where the first Born approximation to F reads (cf. Ref. [31])
1

F(r) = 2n jdEEZ(l—E) [2—jo2kn] = [1— o fo<kFr)jl(kFr)] . @)
F

and k = k/kg, k being the nucleon momentum (divided by ) in the CM system of a nucleon
pair. Using the partial wave expansions for @ and ¥ we obtain for remaining (correlated)
part of F

F(r)—-F5(r) = 2;:} dkR*(1-k) Y, [1+ (-1
0 Jil's

x (2J +1) [k, ©)—2jkr)du 1uii(k, 7). 21)
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Our partial defect wave functions, y;;, differ from those defined in [33] by a factor of r,
otherwise the notation follows that of Ref. {33].

The calculation has been performed self-consistently at the normal nuclear density
po = 0.17 nucleons/fm® (kg = 1.36 fm~?) using standard approximations. The soft core
potential of Reid [28] has been used as the charge independent N-N interaction v in
J < 2 partial waves. The contribution to F from J > 2 states has been neglected. Our

10 20

Fig. 2. The function F(r) (solid line) and its first Born approximation F2(r) (dashed line). For explanation
see the text

results for F are shown in Fig. 2, where for the sake of comparison the first Born approxi-
mation to F, F®, is also shown. The healing property of ¥ implies F~ F B at sufficiently
large r. On the other hand, at small distances F is very strongly supressed as compared
to F® and practically vanishes for r = 0.3 fm: this reflects the existence of the strong
short-range correlations induced by the strong, repulsive short-range component of v.
This effect may be very important when calculating E,, because Ucsp contains a very
short ranged component of the range fic/mo® = 0.2 fm.

The charge asymmetry parameter E, has been calculated with CSB potentials discussed
in Section 2. The parameter E, depends very strongly on A4r, but is quite insensitive to 4a.

20}
1.0F Aa=01fm
L —
-02
02
Ar
8
E, .
_‘].O/..
Aa=17fm}
-2.0} Ea

Fig. 3. Thecharge asymmetry parameter E, and its first Born approximation Ef (in MeV) versus Ar (for
fixed 4a). The hatched areas include all the E (A7) and Eg(Ar) straight lines corresponding to 0.1 fm<Ada< 1.7
fm. The calculations have been done for ns =6 and m; = 1
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Let us mention that the sensitivity of the binding energy to the value of effective range
(for charge independent nuclear forces) is well known in the case of the nuclear three-
body calculations (see, e.g., Ref. [36]).

Our results for E, are shown in Fig. 3. The role of the short-range correlations induced
by v is very important; inclusion of these correlations, when passing from F® to F, yields
the change of sign of E, for |{dr] > 0.1 fm. Let us recall that in the case of monotonic,
long-ranged phenomenological CSB potentials of Refs [21-23] the corrections induced
by the short range correlations were negligible [31].

In order to investigate the dependence of E, on 4r and Aa we notice that formulae (12)
for «, and a, imply (cf. Fig. 3)

E/(da, 4r) = a,4r+a,Aa, (22)
where
OE
a, = 2 = —5.64MeVfm™!, (23)
d4r ar=0
4a=0
aEa -1
a; = = 0.16 MeV fm™". 249
oda Ar=0
4a=0

The weak dependence of E, on da is reflected by the fact that |a,/a,| ~ 40.

4. Discussion and conclusions

Our simplified semiphenomenological model relates the charge asymmetry in the
low energy 'S, N-N scattering parameters (da, 4r) to the (hypothetical) charge asymmetry
term in the nuclear mass formula, E,(N—Z). The charge asymmetry parameter, E,, is
found to be very sensitive to the charge asymmetry in the effective range, 4r. The present
measurements of r,, do not have an accuracy sufficient for a meaningful comparison
with r’:p. Generally, it may be expected that the ruclear binding energy systematics will
exclude such a high values of 4r as [4r] $ 0.2. E.g., for da = 0.9 fm and 4r = 0.3fm
we would have E, = —1.5 MeV. In the case of the nucleus 2°®Pb the contribution to
the nuclear binding energy resulting from CSB component of nuclear forces would
then be 8Eqg = E(N~Z) = —66 MeV. This contribution would constitute 25% (1)
of the conventional volume symmetry energy term JE,,, = E(N—-Z)*/A = 260 MeV.

In the nuclear matter limit the existence of dE g would have an obvious conse-
quence: at a fixed total density ¢ = g,+ ¢, the minimum of the nuclear binding energy
would be reached at ¢, # g,, namely, at

Qo = (@n_gp)/g = —%— a/ES'

The charge asymmetry da = 0.9 fm, 4r = 0.3 fm yields ap = 2.6%.
The parameter E, enters the formula determining the B stability line. The modification
implied by the CSB effects will consist in replacing ¢*(M,—M,) by c¢*(M,~M))+2E,.
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According to results presented in Section 3 the quantity ¢*(M,—M,)+2E, becomes
negative for 4r & 0.15fm.

Presented above discussion leads to the conclusion that a reasonable value of E,
may be expected to fulfill the inequality |E,| & 0.5 MeV. This would correspond to
|7an—T5p| € 0.1 fm. The negative sign of E, would be reasonable in the view of the Nolen-
Schiffer anomaly in the Coulomb energy differences of mirror nuclei [26]. The sign of
E, is (in our model) directly related to the sign of 4r only for |4r| =~ 0.05 fm, the negative E,
corresponding then to positive 4r (r,, > rg, .

The introduction of the spin dependence of Ugsy would spoil the one-to-one corre-
spondence between Ar, Aa and E,. The spin structure of U derived from the electro-
magnetic mixing of the isoscalar and isovector mesons seems to indicate that this spin
dependence may be rather weak [4,18] (cf. Section 7 of Ref. [35]).

Systematic investigation of the charge asymmetry in the a-dependence of the smooth
volume part of the binding energies of heavy nuclei may represent quite a sensitive method
for studying the CSB component of nuclear interaction. In contrast to the theoretical
analyses of the Coulomb energy differences in T = 1/2 mirror nuclei, the proposed study
of the volume (Liquid Drop Model) part of the nuclear binding energies of heavy nuclei
seems to be relatively simple.

The author expresses his gratitude to Professor J. Dabrowski for valuable discussions
and helpful comments on the present work. He is also grateful to dr M. Haensel for
critical reading of the manuscript.
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