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APPLICATIONS OF TWO-DIMENSIONAL QCD
By J. ELuss
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(Presented at the XVII Cracow School of Theoretical Physics, Zakopane, May 27 — June 9, 1977)

The phenomenology to be tested in two-dimensional QCD is first reviewed and
't Hoofv’s light-like gauge formulation of two-dimensional QCD in the 1/N¢oiour €Xpansion
developed. Then, the model is applied to a number of hadronic reactions involving electro-
magnetic currents and also to some purely hadronic interactions.

1. Introduction

It has been said that Quantum Chromodynamics (QCD) is the first field theory of
the strong interactions which is not obviously wrong [{]. Unfortunately, this does not
necessarily mean that QCD is actually right. Even the derivation and applications of the
much-cherished property of asymptotic freedom [2] completely ignore [3] the confinement
problem, and no-one has yet proved that QCD confines quarks. On the other hand, QCD
is generally believed to be consistent with, or indeed imply, many of the ideas in the folk-
lore of present-day strong interaction phenomenology. This latter may be divided into
four general categories:

(i) Spectroscopy.

(7i) Asymptotic freedom, relevant to some processes known to be controlled by
dynamics at short distances. These include deep inclastic reactions such as ete™ = 9% —
hadrons and e + hadron — ¢’ + anything.

(iify “Hard” Processes, where large momentum transfers are involved, but a direct
connection with dynamics at short distance and asymptotic freedom has not been estab-
lished. Such processes include lepton-pair production in hadron-hadron collisions,
quasi-elastic form factors and large-angle scattering, and particle production at large
pr in hadron-hadron collisions.

(iv) “Soft” Processes, where only small momentum transfers are involved, and no-one
would believe that short-distance dynamics plays an essential role. Such processes include
hadron-hadron scattering at small momentum transfers, total cross-sections and particle
production at small py in hadron-hadron collisions.

* Address: CERN, CH-1211 Geneva 23, Switzerland.
(1019)



1020

Unfortunately, our understanding [4] of four~dimensional QCD (QCDy,) is too prim-
itive for making profound studies of many of these aspects of strong interactions.

So we must fall back on models, and the purpose of these lectures is to develop and
use two-dimensional QCD (QCD,) {5] as a tool for investigating our phenomenological
ideas about QCD,. Clearly QCD, must be used with care — it has no transverse size
or momenta, the infra-red and confinement structure must be very different from QCDy,,
and so on. The hope is nevertheless to convince you that QCD,

— is a simple and tractable model suitable for studying the interactions of confined
quarks,

-— has useful things to say about the validity of many common ideas in strong interaction
phenomenology, and

— may suggest some new ideas suitable for phenomenological tests in the real four~dimen-
sional world.

In this first lecture, the phenomenological ideas we might want to test in QCD,
are briefly reviewed, ’t Hooft’s light-like gauge formulation [5] of QCD, in the 1/N g .,
expansion is developed, and finally some spectroscopic topics are discussed. In the second
lecture the model is applied [7—9] to a number of hadronic reactions involving electromag-
netic currents. The third lecture looks at some purely hadronic interactions [10-13] and
tries to draw some conclusions.

1.1. Phenomenological ideas to be tested
Spectroscopy

Any list of prominent features of hadron spectroscopy must start with the absence
{14] of quarks. The confinement mechanism which removes them from the physical spec-
trum is surely very different in QCD, from what it may be in QCDy,. In two dimensions
gluon exchange gives a linearly rising potential, whereas in four dimensions one glion
exchange (OGLE) gives a 1/r potential, no clear signs of confinement appear in perturba-
tion thepry [15], and it seems that some non-perturbative mechanism [16] must be invoked.
It is hoped this will give an effectively potential which rises linearly at large distances.
The observed linearly rising (J oc M?) Regge trajectories of mesons seem to require such
a phenomenon, which is often associated with a string-like [17] structure connecting
quark and antiquark. The observed Regge trajectories seem to group themselves so that
mesons and baryons form multiplets of SU(2N;), where N; is the number of quark flavours,
and 2 is the number of quark spin states. Testing this symmetry seems difficuit in two
dimensions where there is no spin!

We also have ideas about what happens in the limits of light and heavy quarks. As
m, — 0, we believe the strong interactions develop an SU(Ny) x SU(Vy) symmetry which
is realized by pseudoscalar Goldstone bosons (chiral symmetry) [18]. As m, 4 .- 0 we
expect

2 -
My & p(m,+my) — 0,

2
Mg =

2

w(my+m) - 0, 1.1
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where g is some typically hadronic mass scale, The 7° mass should also vanish analogously
to (1.1), but there is a subtlety about the 4 and #” which we do not understand {19]. If you
believe that my <C 500 MeV in the real world, then (1.1) and m,f/mé x 1/25 imply that
m, 4 are only a few MeV each. A corollary of chiral symmetry is the Adler zero condition
that pion (kaon) amplitudes should vanish [20] as pi™ — 0. The property (I.1) does
not hold in many bag models or strong coupling approximations for studying quark
confinement on a lattice [21].

It has been suggested that as m, — oo the lightest qq mesons may be approximately
non-relativistic bound states in a simple Coulomb potential (““‘charmonium”) [22]. Further-
more, electromagnetic and strong transitions be:ween these states may have simple descrip-
tions [22, 23] in terms of quark-glion bound siate perturbation theory.

Asymptotic freedom

There is a class of hadroaic processes involving very virtual photons at high energies
which are believed to be related to the short-distance and light-cone singularities under-
lying strong interactions {2, 24]. An example is (e7e* — y* — hadrons), which is propor-
tional to

n(g?) = [ d*xe" *0; [J3M(x), J*™0)] |0). (1.2)

As g% = + o0, ¢o — o0 in the centre-of-mass system so that the exponential in (1.2) picks
out xp -» 0, which implies x, — 0 because the commutator is causal. Consider also deep
inelastic lepton-hadron processes (e+H — e+X, v+H - u+X, v+H = v+X, etc.). In
the Bjorken limit

QZ
2p-q

0’=—g>’>w, v=p-g- o, Xp; = fixed, (1.3)

the x> — 0 light-cone singularity between two hadronic electromagnetic currents is picked
out. Cross-sections for these deep inelastic processes are conventionally calculated using
asymptotic freedom, and assuming that the long-distance non-perturbative confinement
mechanism can be ignored, so that the hadronic cross-sections are “‘as if”” quarks were

e 2 Qq

}—o-(q éx a q—-’-xoa )—~~-~0Cl 3
e ao

Fig. 1. ete~ annihilation into hadrons given by the parton model motivated by asymptotic freedom

essentially free. It is not at all clear that these “as if” calculations — which can only be
understood in the sense of averaging over hadronic resonance peaks — are in fact legiti-
mate. Be that as it may, “as if” calculations yield the parton [25] results (from Fig. 1)

oe* ¢ — y* — hadrons)

> 2 1.4
e e, ) o 9
charass
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and (from Fig. 2)
vWae+H » e +X) » Y QIXyP (X)), (1.5)

Bj quarks

where P (Xg;) is the probability of finding a quark q with infinite momentum fraction Xj;
inside the hadron target H. {The formula is modified by logarithmic factors in QCD,,

q q

H pH pH
Fig. 2. o(e+H — e+ X) given by the parton model motivated by asymptotic freedom

but these do not alter the essential picture.) A related idea, which is not purely a short-
-distance property but relates also to the long-range confinement problem, is the suggestion

M 2 M 2
q
*»4% Z———{g
x ¢ qu l

Fig. 3. Quark fragmentation model for o(ete~ > M+ X)

)X

X

an “‘asymptotically free” quark produced in either of the deep inelastic reactions (1.4),
(1.5) should fragment into hadrons through a universal function (see Fig. 3)

. p
Dyom(Xp): Xp = % (1.6)

q

with py and p, measured in a suitable infinite momentum frame.

“Hard> processes

In this category one may include a number of processes which involve large momentum
transfers (Q? or t), but where no connection with the underlying short-distance behaviour
of the theory has been proved. An example involving large Q2 currents is the process
H; +H, = I*I-+X, to which Drell and Yan [26] applied the simple parton-antiparton
annihilation model of Fig. 4 to get

2

9 H 4 H, - 1170 4X) =
sz( i 2 (Q) - 3NCQ4

2
X JXmdXz(S (X1X2 - %) Z [P(X )P5(X3)+P(X)Py(X )]X, X, .7

where P (X) and Py(X) are the same probability densities appearing in (1.5). Other “hard”
processes include quasi-elastic electromagnetic form factors of hadrons, large angle elastic
hadron-hadron scattering, and inclusive particle production at large py. Many people
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[27, 28] have proposed parton or constituent interchange models for these interactions’
Common features are a “hard” subreaction calculated in perturbation theory (cf.»
e+q — e+q in deep inelastic scattering) which is embedded in external hadrons using
quark probability densities P (Xy;) [cf. (1.5)] and fragmentation functions D, m(XF)

q

Fig. 4. Lepton-pair production and the Drell-Yan [26] qq annihilation model

[cf. (1.6)]. Different “hard” processes are inter-related because the “hard” (short distance)
subprocess is believed not to be renormalized by “soft” (long distance) effects [28]. The
most fundamental predictions of such models are dimensional counting rules [29] which
read scaling laws directly off the fundamental subprocess (cf., 1/Q? for ete~ — y* — had-
rons from e*e~ — y* — qq).

‘¢Soft” processes

These include hadronic reactions at low momentum transfers to which no-one would
apply asymptotic freedom or short-distance ideas. Examples are hadron-hadron quasi
two-body scattering in the Regge limit near the forward direction, total cross-sections
and inclusive hadron production at low py. A Regge-behaved amplitude for 2-2 scattering
looks like

Ayy ~ R0y (0)s™O (1.8)

S oo

t fixed
where the same og(t) appears in all reactions with the same quantum numbers exchanged
in the ¢ channel, and is a continuation of the crossed-channel gq bound state poles
[J = ag(M?)], and the amplitude (1.8) has crossed-channel factorization. Amplitudes for

1 po ! Yot
L o= - Tk
2 z
R
2 Y 7

Fig. 5. Direct channel resonances dual to Regge poles

2-3, 2-4, 3-3, elc., scattering should have multi-Regge behaviours generalizing (1.8).
Phenomenologically, there is an additional 7 = 0, C = +1, Regge singularity near J = 1
at t = 0 which is not obviously related to crossed channel qq bound states — the Pomeron.
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Fundamental to the systematization of Regge phenomenology is the dual [30] idea,
illustrated in Fig. 5, that

Y direct channel resonances = Y. crossed channel Regge poles (1.9)

with duality also relating [31] the Pomeron to the production of two or more resonant
clusters in the direct channel. If there are just qq bound states (no exotics) then duality
(1.9) implies the exchange degenerate [32] pattern

Ay R A, N U R Oy, (1.10)

with similar relations for the Regge residues y*. Finally, total cross-sections and inclusive
hadron distributions at small p; should be controlled by the same Regge singularities
(1.8) with t = 0. In particular, the Pomeron would be responsible for Feyman scaling,
whereas Regge exchanges would give subasymptotic corrections.

1.2. The 1/N o €Xpansion

A powerful framework for discussing the above dual ideas for “soft” processes is
provided by the 1/N_ .., [33-35] and related topological expansions [35, 36]. We will
see also that the 1/N_ expansion plays an essential role [5] in practical calculations with
QCD,. The idea is to consider the limit

N, — o : g°N, fixed (1.1D)

of graphs is QCD. Quarks are represented by fields gi: i = 1,...,N,and a = 1, ..., N;
are colour and flavour indices, respectively, while gluon fields 4,; are written in a matrix

i o colour A‘ ———e_._ colour
Qg 5====—=- flavour WJ =" anticolour

Fig. 6. Notation for quark and gluon propagators in the 1/N, expansion

notation. The notation is indicated in Fig. 6. Since we want to consider an SU(N,) gauge
theory with N2 —1 massless gluons, we must remove the trace component from Auj-

- N R ,
Af=A5— N O A (1.12)

which actually makes no difference at leading order in 1/N_.

There is a remarkably simple topological classification of QCD diagrams obtained
[24, 35] in the limit (1.11). Fig. 7 shows how some low order diagrams for the quark propa-
gator and qq scattering can be neglected in the limit: one is just left with planar diagrams.
In general, we can imagine drawing any QCD Feynman diagram such that the colour
lines do not touch or cross on a complicated surface with H handles and B boundaries.
The diagram in the U(N,) theory then has a multiplicative weight

(2N VT VN (1.13)
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T TS TS

g gt g‘~0
(bi) (L2) (b3)

Fig. 7. Some diagrams (a) for the renormalized quark propagator, and (b) for qq scattering, showing how
some (az), (bs) may be neglected as N, — o0

(D= 0N ——()< =0(1VN,)

(a) (b)
E:&:O(ﬂ ——@ :O(UWC)
(c) (d)
t
N ——
SO ) (@
i\ —
2 2 Asl Afu A“5
(e)
o M
b~ . . -~
X i>€ HOC DQ&
c- 'MZ -
(f) (g}

Fig. 8. Counting of powers of N, for (a) ete~ annihilation, (b) meson-qq vertex, (c) e+H — e+X,
(d) 3-meson vertex, (e) leading 6(1/N.) contributions to meson-meson scattering, (f) and (g) O(1/N2) contri-
butions to meson-meson scattering
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where V) is the number of qqG and 3G vertices, V, is the number of 4G vertices. It is not
difficult to satisfy oneself of the validity of (1.13) by considering a simple example of each
topology, and then adding extra gluon vertices and colour loops a la carte.

Simple examples of N, counting for some of the physical processes discussed in Section
1.2 are shown in Fig. 8. Notice that since mesons are colour singlets, their qq wave functions
must have a factor \/l/Nc, and the counting for reactions involving mesons is got by attach-
ing them to external quark boundaries. There is no simple way of treating baryons in the
1/N, expansion [37]. Notice the leading G(1/N,) diagrams for meson-meson scattering
in Fig. 8(e). These diagrams yield simultaneously direct channel meson poles — which
are very narrow since

(M, » M,+M,) = o(%) (1.14)

— and crossed-channel poles. They therefore yield the duality (1.9). On the other hand
the diagram of Fig. 9a has two clusters in the direct channel, and might be expected to
yield a bare Pomeron [31] .What happens in the crossed channel ? Topologically, a cylinder

—_— N

{a) (b} (c)
Fig. 9. (a) Absorptive part of Fig. 9(f), and (b) representation as cylinder exchange, which might (¢) be

due to multiple gluon exchange

is exchanged (see Fig. 9b), and consistency of dual resonance models {38] requires that
the cylinder have particle poles. In QCD language, these would be bound states of gluons
(see Fig. 9¢) (gluonium) which should be very narrow [35]:

_ _ i
(Gluonium — M ,(qq)+M.(qq)) = O (—) (1.15)

N?Z

Whether these things exist and are observable is completely unkown [39].
1t should be emphasized [35)] that you can always add closed quark loops into any
diagram — see Fig. 10 — at the expense (1.13) of a factor (Ny/N,). Such insertions do not

f N ; —
\\\ETL’//‘
Fig. 10. Insertion of a quark loop introduces a factor Np/N,

alter the global topology of the diagram, and Veneziano and others have emphasized the
utility of the limit

N¢/N,, g°N, fixed; N,— (1.16)
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in which all such insertions arc summed: the Topological Expansion. Such diagrams are
required by umitarity, but believed not to alter the dual properties (1.9), etc. In QCD,,
work has mainly been devoted to the leading order in N_ for any given topology, and setting
up a Topological Expansion is an open and interesting problem.

1.3. The basic formalism of QCD,
Our basic Lagrangian is [2, 4]
&L =} G,.;G" 4+ qi(iyD}— m 80} (1.17)
where the gluon field strength
G,y = 0,A,5—0,A4,;+g[A,, AT} (1.18)
and the covariant derivative
D, = 8,0\ +gd} (1.19)

with fiﬂ; defined by Eq. (1.12). To analyze (1.17) - (1.19) in two dimensions we will use
[51 light-like co-ordinates.

Xy = %(xoixl) =x¥; py= \/15( ot p) = P, (1.20)
so that
P q=p-qg.+piq-
and the Dirac y algebra is particularly simple
e =72=0; (v 3=2 [rer-]1=2s (1.21)
’t Hooft used the light-like gauge [40]

A_ = ~(Ao 1) = 0.

NE

In this case (as in all other linear gauges) the multigluon interactions disappear because
[A4,, 4,] = 0. The only non-zero component of G,,; (1.18) is then

G, b= —0_4," (1.22)
The equations of motion of the theory (1.17) are then

g = 2i0-[(1—y5)a7] = muy-[(1 +75)a7] (1.23)
indicating that the left-handed quark field

- I—ys
qL = > q
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is entirely dependent on the right-handed quark field
F+7s
qr = 5 q

8ALG = 02 AL = — /2 garlan; (1.24)
indicating that the gluon field A4, is also completely dependent on gg. Thus there are no
independent, dynamical, gluonic degrees of freedom, and the only field to quantize is g:

and

1
{ar(x+,x2), R (V4r X)) = 5(»\‘+—-.\‘+)( J;ys) (1.25)

is the canonical light-like quantization condition. The gluons just give a linearly rising
Coulomb potential which is instantaneous with respect to the “time” variable x_. The
gluon Green’s function which solves
A, = 6%(x) (1.26)
is just
Ai(xe,x) =8(x)(% x4 +Bx, +O). (1.27)

The parameters B and C reflect residual gauge degrees of freedom which can be removed
or ignored. In the calculations described here we will set B = C = 0: the momentum space
version of (1.27) is then [41]

PV ) ! + ! (1.28)
CUNKE) T (k- —ie)® T (k_+ie)*] '
e e L PV iKY
J ]
— _3__“____'_ = ig.f2q_q,-ml «i€
a
il
sQa
“—< e i (: = Zig
i NG
)
7,
M< S (a = =21 (=1/N)g
i &
j

Fig. 11. Feynman graph rules for QCD,

We are now in a position to write down the Feynman graph rules for QCD, (see Fig. 11).
Notice that because of the simple 2 dimensional y algebra (1.21) it is possible to write
down the rules without using any y matrices.
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The resulting theory is very similar to QED, [6] except that the group theoretical
weights (1.13) enforce a different procedure for summing graphs. The first important
example is the renormalized quark propagator [5]. Fig. 7 (a3) gives an example of a graph
which can be neglected in the 1/N, — oo limit. The leading order diagrams can be written
as nested rainbows. The simplest such diagram, shown in Fig. 7(al), has the value

d’k i i(p_+k_)
. 2 . —
T(al) = N(—2ig) J(z )2( >(p+k) g (1.29)

We first do the k. integral in (1.29) by introducing a symmetric cut-off A:

_ ——2Ncg f jdk 1 L
) = lim 4= 55 =\, (1.30)

oo [( k- m; —ie
—A P+ + 2—(P—+k-):l

Depending on sign (p-+k-) the k.. pole is in the upper or lower 1 plane, and the k. inte-
gration contour should be closed appropriately to yield

+4
1
lim J dk, - - = —qisign(p_+k_)
A w0 ( ) m —ig
-4 [p+ + 2( _+k )]
and hence
g*N.i (dk_ g2N. i
7(al) = ——sign(p.+k_) = . (1.31)
27 k=~ np_

When we consider a higher order diagram such as Fig. 7(a2), there is always at least one
k. integral which is not trying to be logarithmically divergent as in (1.30), so that the
integration contour can be closed in such a way as to give [dk,. = 0. Then the only diagrams
contributing to the renormalized quark propagator are sequences of loops as in Fig.
7(al), and the renormalized quark propagator

. . 2 . .
u ip- ip. g°N.i ip_ lp_
S (p) N 2 2 i + ( 2 2 i )( )( 2 2 i > + o
p-—m;+ie p—my+ie mp_ p—m,+i€ p ——m +w
(1.32)
where
~ g’N
m2 = m>-m?, mP=>2-° (1.33)
T

is a renormalized quark mass. This quark mass shift depends on the gauge choice of C
(1.27), and may even be taken to oo [42], but the C = 0 value (1.33) has a special role,
as we see in the next section.
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1.4. Bound states

We start off from the colour singlet qq 7 matrix. The planarity enforced by the /N,
expansion implies that 7 obeys the equation indicated in Fig. 12, which can be written as

. 2 q, '
T g p) = 7“}84_2 2 J d k2 S(k)Sh(p—zk) Thasp). (134
(9-—4-) (2n)° (k-—q-)
a,q a,q’ G_.Q____gﬁ' ag k. a9
iT = - iT
6p-q bp-q Bp-q Bpa’ Bp-q b.p-q

Fig. 12, Equation for the qq 7T-matrix

Suppose that 7 has a colour singlet bound state meson pole at

2
N
S=2p,p. =ulm?, m*= g e

(1.35)
n

and sit on it. You will then extract from (1.34) an equation for the meson-qq vertex indi-
cated in Fig. 13, and written as

s 2 2
- —ig°N., d°k
r:b ; =

@:n) m’ f(k-—q-)

a a
Q_=Xp. k Q_=xp_
- = r ‘
P P
b b

Fig. 13. Equation for the meson qq vertex function I’

2 S()S™(p — k)3l (ks p). (1.36)

It is convenient to rewrite (1.36) by introducing a meson wave function
_ i - -
XY = -- f dk . S%(k)S"(p— k)I'3(k; p) (1.37)
T
where X = ¢./p- is the light-like momentum fraction carried by the quark. Dimensional
analysis implies

- 1 -
rifg; p) = o r2(x),

so that the integration in (1.37) gives

2
GEX) = — ! r(x) =2 for0<X <1
n - 2 n s o Ya T PR or < <1,
m (Ilz"‘ Ya—1 _y,,—l) m
" X 1-X

=0 for X <0, X > 1. (1.38)
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Substituting (1.38) into the integral equation (1.36) gives the 't Hooft [4] bound state
wave equation

HEG(X) = HPm(X), (1.39)

where H = Hy+V:

Hy= (P2l e 221Y 0y o a¥ 1.39b
TN\ x 1-x)° N (X-Y)*" (1.395)

¢

The bound state equation (1.39) is formally identical [43] to that for a 2 dimensional
string model, but it is unclear how to extend this analogy beyond two dimensions [17}.

The solutions to (1.39) have a few formal properties we should discuss before studying
the spectroscopic properties. The relevant solutions vanish as

by Ba
I jerxre fx -0
n (X) \(= (i — Xy as X ot (1.40)
where 8, €(0,1) solves the equation
nf,cotnf,+y,—1 =0 (1.41)
and the limiting cases are attained by
P.— {(1) as  m, —» {?)o (1.42)

The Hamiltonian (1.39b) is Hermitian in the Hilbert space of functions vanishing at the
boundaries [5,8], and the wave functions ¢;n = 0,1,2 ... form a complete orthonormal
set:

1 —_ -
J‘ dX¢:b(X)¢:::b(X) = (Smm (1‘433)
0
T 0BT = S(X = X"). (1.43b)
The sequence of bound states n marches off to m? = o, with

Adm? = lim (m2,,—m}) = n*m? (1.44)

and in the limit they obey a scaling form of (1.39):

= 0]

1
) = —— ¢~ j dy ———, (1.45)
¢ J (C—n
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where
X ~ &,
as n — o and
. W s V2 sin(—) as & - o0,
PE ) = 30, $C) ~ n (1.46)
C éPa as &0,

1.5. Spectroscopic properties

We are now in a position to make a brief comparison with some of the spectroscopic
ideas of Section 1.2. The fact that the meson wave function @#(X) is regular, while the

factor
2 ’))n—l yb_l
= S T
X 1—X

vanishes when the quarks are on mass-shell, implies via (1.38) that the meson-qq vertex
I'ab actually vanishes on quark mass-shell [42]. This is a reflection of confinement: we will
see more later. The infinite sequence of asymptotically equally spaced states (1.44) is
reminiscent of linearly rising Regge trajectories with a universal slope. As shown in Fig. 14,

ﬁ

—
~N
1

m? Jm*wt

Fig. 14. Spectrum of low-lying mesons for different quark masses, adapted from Ref. [5]

there is a tendency at small n for “trajectories” to steepen for low mass quarks and flatten
for high mass quarks.
The lowest lying state made of low-mass quarks actually has (m#)? — 0 as m,, m, — 0:

(m* ~ (\/3)(m +m) =0 (1.47
exactly as wanted by chiral symmetry (1.1). If you estimate (see lecture 3)
3 3
o ~09GeV = (1.48)

2
ng’N, n*m?
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then you find m, =~ 0.2 GeV, m, 4 ~ 10 MeV correspond to the 4 dimensional values of
m? and mi. These estimates are in line with other short-distance estimates of quark masses
in 4 dimensions [44]. The lowest-lying state also decouples [7, 45, 12] completely from the
other mesons as ma — 0. This may be regarded as a 2 dimensional version of the Adler
zero [20], because we sce from p*> = 2p,p- that if a 2 dimensional state decouples at p, = 0
then it decouples completely, unlike the case in 4 dimensions. This also reflects the theorem
[46] that Goldstone bosons per se cannot occur in 2 dimensions.

In the limit as m, — oo, Callan, Coote and Gross [7, 47} have found that the equation
(1.39) can be approximated by a non-relativistic Schrédinger equation with the two-
-dimensional version of the Coulomb potential beloved of charmonium proponents.
This picture should work for mz > m?, which may well be the case for the charmed quark
with a mass of ~ 1.5 GeV. It would be interesting to carry this analysis further, looking
to see whether radiative transitions are adequately described by nonrelativistic electric
and magnetic dipole transitions, and analyzing Zweig-disallowed decays in more detail
than was done by Cullan, Coote and Gross [7, 47].

We conclude that, despite its particularities, the spectroscopy of QCD, has the right
“feel” to it, and in the next lectures we will go on to look at strong interaction dynamics.

2. Hadronic reactions involving currents
2.1. Preliminaries

The main purpose of this lecture is to discuss how currents probe the strong interac-
tions in QCD,. Some of the processes discussed (ete~ — y* — hadrons, e+ M - e¢+X)
are a priori strongly believed [24] to probe the short distance and light-cone behaviour
of the theory. Others (meson form factors, M+M — "I~ +X) [24] are not known to have
such a connection with short distances, while yet another (ete~ — M + X) probes light-cone
behaviour [48] but clearly involves the long-distance confinement problem in an essential
way. Before discussing any of these processes in detail, it is necessary to review a few formal
aspects of qq scattering.

The qq 7 matrix, introduced in Section 1.4 and obeying the integral equation (1.34),
can be written [7, 8] as a sum of a one gluon exchange (OGLE) piece, and a multigluon
piece which generates meson bound states:

TX =q-/p_,X =q_[p_;p)

g’ g z : 1 B
= - r&xHrex, 2.1
pPr(X—-X')?  m*pt p*—mi+ic " (DX 21

n

where the meson-qq vertex I's was introduced in (1.36). Taking the absorptive part of
T (2.1) we find [7, 8]

g27'C S _ _
ImT =—3 p ZJ 8(p* —m)I(X)IH(X) (2.2)

n
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which has no qq continuum, but just meson bound states. Also, from (1.38) we see that

a—l  y—1

X 1-X

i) = —m? (u,% - ) $(X), (2.3)
so that as emphasized before, the meson-qq vertex I'® vanishes when quarks go on mass-
-shell. There is no trace of a continuum in the colour singlet qq channel. It is a simple

matter to rewrite the 7" matrix directly in terms of the meson wave functions ¢2(X) when
X, X'e [0,1]:

m? X 1-X

2 2
va—1 y—1
Nxx%m=§~(p y Vb
I

. )&X—XU
2 2 Aa—l v, — 1 2 T | a —1
-5 (—’-’~2~ Sl )(’i St ’*M) GX,X'ip), (4

m X 1-X )\ m? X’ 1-X
where Green’s function G is defined by

BB X)

G(X, X'; .
( P) p2~mf+i£

(2.5)

il

]

The 8(X—X’) piece in (2.4) will cancel the disconnected part of qq scattering leaving
behind just the bound state mesons (2.5), as we will now see in some examples.

2.2. ete annihilation [7, 8]

The cross-section for ete~ — y* — hadrons is proportional to the hadronic vacuum
polarization indicated in Fig. 15a. To leading order in the /N, expansion, the vacuum
polarization bubble can be written as a sum over gluon exchanges, as shown in Fig. 15b,

W @@ O D
:
(a) (b) (¢)

Ak O+ D O~
td)

Fig. 15. (a) The absorptive part of the hadronic vacuum polarization, and (b) its representation to leading
order in 1/N, as a sum over multi-gluon exchange, which can (c) be written as a sum of disconnected and
rescattering pieces, which latter can (d) be decomposed as suggested in equations (2.4, 2.5)

which can be decomposed into a disconnected piece and a piece with a 7 matrix inserted,
as in Fig. 15¢c. We can in turn use (2.4) to decompose T into the § function and meson
bound state pieces indicated in Fig. 15d. The first diagram in Fig. 15d contains just one
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loop integration of the generic form
2

Ak 5 S%k)S*(q— k) (2:6)
@ny? - '

which upon integration as in deriving (1.38), is proportional to

1

Q.7

1

J‘dX 2 - ]
 va—1 w1

¢ m X 1—X

the characteristic energy denominator which appeared also in the numerator of (2.4).
If we now study the é function diagram in Fig. 15d, it clearly has two loop integrations,
and has the generic form

q Ya—l =1

g a2’
@n)? J @n)? S 00S'a - A)(_‘”_"Z\"_ 1-Xx

Performing the k., and k', integrals one gets two energy denominators of the form in (2.7):

1 2 -1 -1
Ix <q_2_va T
( ya—1 yb—1> m X 1-X

X 1-X

2

) S(X — XSS (g~K). (2.8)

x X —-X") (2.9)

The two contributions (2.7) and (2.9) clearly have the same form: care shows they cancel
exactly. Furthermore, evaluating the last diagram in Fig. 15d gives two energy denomina-
tors which precisely cancel the two numerators in the G term of (2.4). Thus, if we write
the vacuum polarization m,,(¢) in the form

@) = (4,4, — 4°8)7(a%) (2.10)
the remnant of all the cancellations is
} (g)* ! -
=7 2 a aa
T = R w = | dX e (X). 2.11
(q°) CorPii) g ,(f) @ (X) (2.11)

Notice that no-gluon, OGLE and multigluon exchanges are all crucial participants in the
conspiracy to produce this simple result. Many naive parton models [49] do not have
this feature, and if taken literally would have physical quarks in the final state.

No trace of the naive quark-parton diagram remains in formula (2.11): how can the
“as if”” calculation of asymptotic freedom [2, 24] work? We can rewrite (2.11) as

(q?) = — Q" {Z( "+ 2(1 _"fngiw} (2.12)
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If we consider taking |¢*| — oo in any direction except along the real axis, then we can
ignore the poles in the second term of (2.12) and use the completeness relation (1.43b)
to show

1 _ 1 _
PRCALEDY £f1X¢;‘"(X)I dY@(Y) = 1,
n n 0
so that the first term in (2.12) is just the quark-parton /asymptotic freedom result

2
(q?) = — Q“I\f + .. (2.13)
nq

Further analysis shows [8] that the second term in (2.12) is

2N [2m? in(—q?
[’" <‘“+...]

nq’ q°

- (2.14)
which is not only non-leading compared with (2.13), but of the same form as found by
calculating Fig. 1 and retaining the effect of quark masses. Thus the masses appearing
in the “chiral symmetry” formula (1.47) are in principle measurable in a high-energy
current-induced reaction in QCD,. (While the above analysis applied to g* large — but
not real and positive which is the physical region — similar conclusions can be reached
[7, 8] by averaging over the direct channel resonances.)

From this analysis we see how a parton model result which is clearly related (1.2)
to the short-distance behaviour of the theory, and hence underwritten by asymptotic
freedom, can be recovered [7, 8] in a model with quark confinement and is not altered
by the long-distance properties of the theory.

2.3. Meson form factors [8]

We now turn to an application which is not underwritten by asymptotic freedom.
In general a quark “form factor” has contributions both from a “‘bare” diagram (Fig. 16a)

w ~<

(a}

Fig. 16. Contributions to the quark form factor

and from a rescattering with a 7 matrix (Fig. 16b). Just as in the case of ete~ annihilation,
Fig. 16 can be rewritten in the form
1 1

V(X)=1- fdy !
0

J dY'G(Y, Y'; q) 2.15)

0

(Y-x)*

which can be written as

1
@ =1 =1

={ — — - X’ X' .
V(X) (mz % l—X)J.d G(X.X';q) for0<X <1, (2.16)

0
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by using the bound state equation (1.39). Unfortunately, diagrams cannot always be
calculated ‘“‘as if” the vertex V were just the “bare” one of Fig. 16a.

Consider a quasi-elastic meson form factor, for which the sum of leading order dia-
grams can be represented by Fig. 17a. The — component of the part of the (n — m) transi-
tion form factor corresponding to the current hitting the a quark is

_ -2ig,

Fo o = jdzkr:‘(k; DISUVAk; 9)Sk— Ik —gq; p)Sk—p).  (2.17)
Hi4

Fig. 17. (a) Feynman, and (b) x_"‘time”-ordered perturbation theory d agrams for the meson form factor

When one does the k. integral in (2.17), one gets contributions corresponding to differential
traditional x_ “time” ordered perturbation theory diagrams [8]. Each of these has energy
denominators

etc. which cancel against the numerator factors (2.3) and (2.16) in the meson-qq and current
vertices. The resulting diagrams are shown in Fig. 17b: the first is the only time-ordered
perturbation possibility when no 7 matrix is inserted, the latter are the two possible time-
-orderings with 7" matrices inserted. The resulting form factor (2.17) can be written as

1

Fo ., = 20,0-(1-X) U dZPZ)P(X +(1 - X)Z)

0

1 1 1

2 oo [PHXY)— (X +(1 = X)2)]
X f ¥ J ZEED U=V + (= X)ZT
0 0

dvaG(y, V;q)}, X =q_/p,

corresponding in an obvious way to the diagrams of Fig. 16b. Note that in writing (2.18)
we have explicitly extracted from some vertex functions a gluon which *“turns” round
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a quark so as to feed it into a wave function with momentum fraction between 0 and 1.
The form of the diagrams of Fig. 16b and the formula (2.18) are particular examples of
general features of calculations in QCD,.
There is a general relation between g2 and the variable X
q° m?

2= — + ) 2.19
M = N T x (2.19)

When X — 0, the second term in (2.18) disappears, leaving
1 _ -
Fom = 20.p" [ dZZ)P0(Z) = 2Qup- 8 pm- (2.20)
0

Thus only elastic form factors survive at ¢> = 0, they are correctly normalized and calcu-
lated by the “bare” current quark coupling.

Consider now the asymptotic behaviour of (2.18) in the limit Q* = —g? - oo. From
(2.19) we see that

le-——éT—»l as Q* - o, (2.21)

so that (2.18) acquires a factor of (Q?)~! from the external (1 — X) factor. In the first “bare”
piece
Hl,i

- _ 2\ fu
BX+(1=-X)Z) > ¢ [1— -z =o (L) a-2%), @2
0’ 0?

because of the vanishing property (1.40) of the meson wave functions. Thus the “bare”
piece of the form factor has an over-all asymptotic behaviour of [8]

@' " (2.23)

and a similar analysis of the second “rescattering” picce in (2.18) reveals the same asymp-
totic power law (2.23).

Several remarks should be made [8] about this result. First note that the form factor
explicitly probes the X — | behaviour of the meson wave function, just as expected by
Feynman [25] and other parton advocates [28, 49]. On the other hand, at least in the
reference frame used here, both “bare” and “rescattering” pieces are of the same order
(2.23), and there is no direct description of the form factor in terms of a ‘“bare” short-
-distance current-qq vertex [28], unlike the situation in e*e~ annihilation where asymptotic
freedom applied. If this feature carries over to QCDy, it would make the absolute normal-
izations of large Q2 form factors tricky to calculate and, when combined with the cor-
responding renormalization of “fixed angle processes discussed in lecture 3, makes it
difficult to relate [28] easily form factors to other “hard” processes. In this situation where
asymptotic freedom is inapplicable, long-distance effects modify in an essential way.
An obvious feature of (2.23) is that the simple integer power of the dimensional counting
rules is not reproduced [8]. It is not clear whether this power renormalization is specific
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to QCD,: in QCD, the counting rules may be correct [50] even if the normalization of the
graphs is more complicated. In any case i, 4 ~ 0.02 are small, and it is difficult to find
a situation where ff, would be easy to observe.

2.4. Deep inelastic scattering [8]

The cross-section for e+ M — e+ X is determined by the absorptive part of the current
correlation function indicated in Fig. 18a. This may be represented in terms of a structure
function W:

vq, vg,\ 1 2
W, = - v — 1 — W(q", v), 2.24
3 (p" q‘)(p qz)'n?. @) @29
a | q q q
|
e T e
P 4] "op n p
(a) (b)

Fig. 18. (a) The absorptive part of the current correlation function, and (b) its representation as a sum of
squares of meson form factors

where v = p, - ¢. In leading order of I/N,, the structure function is expressible [8] as a sum
of squares of meson form factors (Fig. 18b):

W= 20 LIF(@))+ F2 oy a®)P0((p+0)* — mp), (2.25)

where we include pieces where the current interacts with either the quark « or the antiquark
b in the target meson. We will consider the Bjorken limit (1.3)

2
0= —¢° > >x, Xy= —-(22— fixed.
v

To get the inclusive cross-section we average over the high-mass resonances »’, using
(1.44) Am% = n2m? and

2v
n’ ~ ‘TC—Z (1 —XBJ) (2.26)

Taking the “bare” picce of (2.18), we can use the scaling relation (1.46) to get

Qﬂ a

Xpo s 5o X (Xp),  (227)

2 o :
F% ,.(bare) : AT e X gp) Jd5¢“(€)
0

where we have used an identity {8] for the scaling function (1.46) which ensures the asymp-
totic freedom result (2.13) for the average over direct channel resonances in ete~ — hadrons.
A little bit of analysis [8] shows that the “rescattering” term in (2.18) is O(In Q% Q%)
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in the Bjorken limit, and so may be discarded. The antiquark form factor in (2.25) has
a Bjorken limit

Qpmiy
FP. ~ (—1)p-
BJ( Y'p \/2 o7

In combining the two results (2.27) and (2.28) in the expression (2.25) for W__, interfer-
ence terms could in principle arise, but detailed analysis confirms the intuitive expec-
tation that they may be neglected in the Bjorken limit. We conclude that

lim v 2W(g?, v) = 2n3{Q2m2[$2(X )] + Q2mE[¢27(1 — X5 ]* (2.29)

2 Xy (1 X, (2.28)

which is the same as one would have got from the simple *“handbag™ diagram (Fig. 2)
of the naive quark-parton model [25, 49]. (The mass factors in (2.29) arise because of the
kinematics of the vector coupling in 2 dimensions: they are completely canonical.)

Once again, a parton result underwritten by asymptotic freedom is recovered in QCD,
despite the long-range effects of confinement. The interpretation that deep inelastic scatter-
ing probes the meson wave function is borne out. The Drell-Yan-West [51] threshold
relation holds between the threshold behaviour as Xp; — 1 of the structure function and
the power behaviour (2.23) of the quasi-elastic form factors. The behaviour as Xg; — 0
of the structure function (2.29) is related to the Regge behaviour of total cross-sections
discussed in Lecture 3, in just the way suggested by Abarbanel, Goldberger and Treiman
[52] . One question which has not been resolved in QCD, is to what extent the approach
to the Bjorken scaling limit is governed by quark and hadron target masses in the manner
advocated by Georgi and Politzer [53]. It would be interesting to study this question in
QCD,.

2.5. Lepton pair production in hadron collisions [I1]

Tt was suggested by Diell and Yan [26] that this reaction might be described by the
simple parton-antiparton annihilation model described in Fig. 4. Unfortunately, short-
~distance asymptotic freedom ideas have not been shown [54] to apply to this process. This
makes lepton pair production interesting to study in QCD,, being a borderline situation
where we may hope to acquire some new insight. The possibilities to be confronted are
that other (bremsstrahlung?) diagrams may not be negligible in the scaling limit [55], and
that the annihilation diagram may be modified. This could either be via final state spectator
quark-antiquark recombination into mesons [56], or by the annihilating quark-antiquark
scattering through bound states before creating the time-like photon which yields the
lepton pair [57].

These questions have been studied in O(1/N,) for QCD, by Kripfganz and Schmidt
[11}, we refer to their paper for details and just quote their conclusions here. They showed
that bremsstrahlung diagrams were suppressed by O(s—*) relative to the annihilation
diagrams, the suppression arising because at least two gluon propagators have to carry
large momenta k% = O(s). Resonances in the time-like Q2 I*I- channel were found not
to contribute in the scaling limit. This cancellation arose from the same mechanism as
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that which removes the Pomeron [10, 12, 13}, as discussed in Lecture 3. The remaining
diagrams have exactly the Drell-Yan [26] parton-antiparton annihilation form, and numer-
ical analysis showed that the normalization was exactly that expected for the naive Drell-
-Yan graph, unaltered by final state interaction effects [56].

Although it is very interesting that QCD, reproduces a parton model result which is
not underwritten by asymptotic freedom, the significance for QCD, of this result is not
clear. For one thing, other fundamental sub-diagrams besides the simple qq — y* — It~
will scale, and perhaps contribute to the large Q2 lepton pair spectrum [55]. For another
thing, the Pomeron cancellation of Lecture 3 presumably does not occur in QCDy, so
that resonant contributions in the virtual photon channel may not be negligible. Finally,
electroproduction scaling is not exact in QCD,, and the Drell-Yan scaling must surely
also be violated. It has been suggested [58] that scaling violations in Drell-Yan may take
the form of convoluting in (1.7) the effective Q? dependent quark distributions which
are determined by asymptotic freedom calculations for electroproduction.

2.6. ete —» M+X[9]

According to the parton model [25, 49], the inclusive cross-section in ete~ annihilation
should have a simple.description (Fig. 3) in terms of quark-partons fragmenting into final-
-state hadrons. This hadronization process presumably involves long-distance confinement
phenomena in an essential way. Tt is easy to show that in the limit

c.m,
Q> w: X =

fixed, (2.30)

the cross-section is related to a light-cone singularity [48]. On the other hand, this is just
one singularity of a complicated four field Green’s function, and one may expect it to be
renormalized by long-distance effects. That this happens can be understood by considering
unitarity [9].

The naive parton diagram for ete~ — X is O(N,), whereas the naive diagrams for
electroproduction e+ M - e+ X and inclusive annihilation e*e~ - M+ X are both O(N?).
Since by unitarity

1
z d
oe*e” - X) = jdXFXF a{— (efe” > M+X) (2.31)
F
m ]

a contradiction seems to arise. This was pointed out by Einhorn [9], who also gave a resolu-
tion [35, 36]. Included in Fig. 19a are diagrams with direct channel resonances as shown

M M M. .
<> o
(a) by *

Fig. 19. (a) Contribution to e*e~ — M+ X which is formally O(NJ), and (b) a direct channel resonance piece
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in Fig. 19b. Since the three-meson vertex is 0(1/\/170) and I'(n - M+X) = O(1/N,)
[34, 35], the inclusive cross-section exhibits oscillations which become sharper and sharper
as N, - oo, as indicated in Fig. 20. These must be averaged in order to give a sensible
inclusive hadron cross-section. We have from Fig. 19b

2
M+X VnOnax 2.32
e M) ), e

A 1Ur2=0(N2)

r=0(1/N,)

[} 1
1 ]
I !
| |
' 1
1

N\
| i
| I
t t

| I—— 2
0 Am? =nim? 9

Fig. 20. Oscillations due to narrow resonances in o(ete~ — hadrons)
and since the resonances do not interfere in the large N, limit

- 1
olete” > M+X) ~ E 2 7 )’ +m2F2 E Glux. (2.33)
X

n

Averaging over the asymptotic resonance separation

, N,
Aml = <§:___~) n?
T
1
oete” - M+X) ~ y2 F( g G,%Mx). (2.34)
! X

To get o(ete” - X) = O(N,), y2 must be O(N,) as N, - oo. But then I', and ZXG:MX
are clearly both O(1/N,), so that Eq. (2.34) implies

we find

olete™ » M+X) = O(N,), (2.35)

as required by the unitarity equation (2.31). This paradox [9] and its resolution [9] entail
a breakdown of naive parton models [49] in which interactions between the qq pair are
neglected entirely. However, they do not conflict with Feynman’s [25] parton fragmentation
description, at least in QCD,.

Some relevant ““time’’-ordered perturbation theory diagrams to calculate for Gy, are
shown in Figs 21(b), (¢): note the role the gluons play in “turning” quarks. We will discuss
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Gux, In more detail in Lecture 3. Suffice it for now to say that in the limit (2.30):

m? - oo, mg/m? ~ (1-Xy) finite, (2.36)

(a) (b) {c)

Fig. 21. (a) Feynman, and (b), (c) x_"time”-ordered perturbation theory diagrams for the 3 meson vertex

the diagram in Fig. 21(b) drops away, and we are just left with Fig. 21(c) which gives

: X i Dy X 2.37
s P~ aM(XF) (2.37)
where
. . ba, b a, 2
[ I —X¢ HX) (YD1 - Y
Da—»M(XF = _ llm varr— dX dY M( )(;bnx( )¢n (( XF)2) (23821)
Du X 00 XF (l ’_XF)
nx/n=1~Xy 0 0 X+ — -(1-Y)
Xr
with
1 1 1 ; - _ 12
1-X (XD (V)P ~ XY
o = Z (dxf, lim FJ‘{X}- gy I F)z) (2.38b)
v x> 00 XF (I“XF) X
h O nx/n=1-Xg 0 0 X+ ———(1~Y)
Xy

Equations (2.37) and (2.38) yield a parton fragmentation picture for the hadronic final
state.

Similar arguments apply to some contributions to the final state in electroproduction
¢+M - e+M'+X, and we conclude that QCD, probably has the desired universality
of final states in time-like and space-like Q? processes. In Lecture 3 we will see that this
universality may even extend [12] to hadron-hadron collisions.

3. Hadron-hadron collisions

3.1. Preliminaries: the three-meson vertex

In this final lecture we will study various aspects of purely hadronic reactions in QCD,.
Among the topics to be discussed [10, 12, 13] are Regge behaviour, duality between direct
and crossed channels, a possible analogue to fixed angle scattering, the existence of the
Pomeron, and inclusive hadronic reactions. The phenomenological ideas we want to test
were set out in Section 1.2: we also hope to find some novel properties which might be
relevant to QCD,.
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Just as the quasi-elastic form factor (2.18) was a crucial ingredient in building up the
deep inelastic structure functions, so the three-meson vertex G,,; will be an essential
building block in constructing hadronic scattering amplitudes. To obtain G,,; we must
calculate the diagram of Fig. 2la. This can be written as a Feynman integral [12]

_ Cm N[ dk
1G123 = NC “2! ’_1\’]‘; (_i;z’j'i
(kN 1 o=k N L s po—k [P
() () ()
Pi-/ P2~ P2- / P3- P3- 2
X 5T ~3TTT AT . (3.[)
o — my +1¢ (P —K)\ — mg+1g (py+K), — m;+ie
T 2k PVt (py k) 2T Ay +k)-
As in the analysis of the form factor (2.17), we proceed by performing the k. integral

in (3.1), which gives us two x_ ‘“‘time”-ordered perturbation theory diagrams of Figs
21(b), (c). They can be written in the form

1 1 _ _
T _ — 1) ba X be X'
(;123 — \/1%2’,"2 b1 dXJ‘dX’( ) ¢1( )¢2( )

2
g % (X Pi- +X’)
p>-

1+x 2=

G (_1_3‘_*) _pi|— P= I (32)
L+py-/pa- L+py_/p;-
Notice that the vertex (3.2) can be written down very simply in terms of [8, 10, 12, 13]
— meson wave functions @ab(k_/p,.)
— quark propagators 1
— gluon propagators 1/k%
The energy denominators from the quark propagators in (3.1) cancel with the numerators
(2.3), just as in the analysis of ete~ annihilation in Section 2.2: again no real quarks! The
gluon propagators in (3.2) play the rdle of “turning” the quarks so that they fall in the
“acceptance” 0 << X <1 of the meson wave functions. Note the factor 1/ /N, outside
the integral in (3.2), and also the relative—sign in the integrand. The latter reflects the
relative—sign between the colours of the quark and antiquark which is felt when the
gluon is “flipped” from one to another as in Figs 21(b), (c).
It is kinematically convenient to work in the rest frame of the particle 3 so that

my = Vs = ‘/(P1 +p2)%

Then we may define 1 to be a left-moving particle so that its light-like momentum

1 -
P = ﬁ([’o“l’l) ~ \/S (3.3a)

8§00
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is much larger than that for the right-moving particle 2:

> D pa = (pempy x (3.3b)
Pr-2 P2 D2~ = \/j Po— P Zs:w \/5 . .
These limits will be useful when we discuss the high energy behaviour of scattering ampli-
tudes.

3.2. Forward meson-mg¢son scattering

As discussed in Section 1.3, the leading O{1/N,) diagrams for meson-meson scattering
are those shown in Fig. 8(e) [32, 38]. In the limit s — oo, 7 fixed the combination A+ A4,,
should give Regge behaviour. The third diagram A, should —0 relative to the other two:

(a)

{c3) (c4)

Fig. 22. “Time”-ordered perturbation theory diagrams for Ag

it has no crossed channel singularities at finite momentum transfer, as it depends only
on the variables s(— o) and u(— —o0). The x- “time”-ordered perturbation theory dia-
grams for A, are shown in Fig. 22. Rather than calculate explicitly the high energy behav-
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iour of each diagram, let us just look at

Im A4, = Z Gu,,né(s—mf)Gl'z/,, 3.4)

and estimate the high energy behaviour of G,,, (3.2).
We see from (3.3) that in the Regge limit p,—/p,- ~ s/m3, so that in order to keep small
the gluon propagator
t
(Xp_[pr-+X')?

in (3.2), we should keep X small. Introducing #:

— m
X —anNr,J (3.5)
P~

we find p, _/p,_ dX = dn = O(1) in Eq. (3.2), as well as the gluon propagator 1/(n+ X")
= O(l), and inserting the scaling version (1.46) of the meson wave function ¢$* we find

s=

m2
o 1 l;a( - ) (X)
Gy ~ 2\/—-( 1)"m? jdn [dX’ N
4]

]

o m% c m%

Now comes the crunch: from the vanishing (1.40) of the meson wave function at its kine-
matic boundary:

2 2\ B»
-/ m - m
S(um) = oo () o
7n3 S o0 S
so that G35 = O(s™#") as s — o0 [59]. A somewhat more detailed analysis [12] shows that
i ~f»
7 s ba c
Gz s;zm 2 \/IV: m? (r_n_2> | , (3.8a)
where
- - [nsin
yra _ cta \/” C”ﬁ b ete. (3.8b)
b

To get the absorptive part of the amplitude for 1 +2 — 1'+2’ we just use (3.4) and average
over the asymptotic spacing 4m2, = m?n? of direct channel resonances

4 P ~Bv—Ba _ _
ImA, ~ —m? (P) (VPevisy (vhevie 3.9

FR AR
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and similar power behaviour can be demonstrated for Re A, and for A,,. The result
(3.9) we [10] would like to interpret as embryonic “Regge” behaviour: why?
First notice that the asymptotic power of s

i(0) = —fy—Fy (3.10)

is non-integer, unlike a normal fixed pole [60]. Furthermore, it depends through (1.41)
on the quark quantum numbers (b, d) exchanged in the crossed channel. Also, this power
is independent of the specific external bound state mesons. As indicated by the parentheses
in (3.9), Im A, factorizes in the crossed channel, as expected of a Regge pole. Going beyond
the scope of these lectures, it has also been shown [12] that 2-3, 2-4 and 3-3 meson ampli-
tudes exhibit the multi-“Regge” power behaviour expected on the basis of (3.9).

If you accept the “Regge” interpretation of (3.9), then there are several amusing re-
marks to be made. First, notice how Feynman’s [25] interpretation of Regge behaviour
as reflecting the exchange of wee quarks is explicitly realized in this model, where the smali
X part of the meson wave function (3.7) is being probed. Notice also that because Im 4, — 0
as § - o (also Re Ay, 4,,, 4, — 0 can be checked explicitly) the 2-2 forward elastic
amplitudes satisfy unsubtracted dispersion relations (assuming they are analytic, which
we have no proof of, but have no reason to doubt). Therefore the dual [30, 38] property
(1.9) of Fig. 5:

Y direct channel resonances = Y crossed channel Regge poles,
clearly holds in QCD,. Furthermore, since there are no exotic states in this order, the
different Regge trajectories (o, f, , 4,) will be strongly exchange degenerate [32]in O(1/N,).
As a confirmation of the “Regge’” interpretation of the asymptotic form (3.9), we should
mention that a connection can be made [12] with the lowest mass crossed channel meson
pole in the limit of small quark mass. First recall equation (1.41)

2
nf, cot nfi,+ (’—n~"> -1 =0
n

Then as was mentioned earlier

m, = o= -1, (3.11a)
while
3
m, - 0= f, ~ (l/—) m, = 0. (3.11b)
nm

Combining with the formula (3.10) for the Regge “intercept”, we see that for small quark
masses nt,, my, — 0:

250 = — Tlt/mi(ma—kmb). (3.12)

But as noted in Section 1.6
m

NE

(m? ~ (m,+ my) (3.13)
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as m,, m, — 0. Thus the Regge “intercept’” and the bound state pole position come together
as m,, m, — 0. Wc can imagine drawing an embryonic Chew-Frautschi plot as in Fig. 23,
with a line interpolating between (3.12) and (3.13) which has slope

3 3

a’ Y e m —— e, 3.14
0 n*m? Tcgch ( )

M%) alm,sm,)—~0

'\‘tmjectory” slope a,= 3ot

Fig, 23. Embryonic Chew-Frautschi plot, showing the limits of “Regge” intercept and lowest bound state
mass as quark masses — 0

It is this “slope” which, when given the real world value of 0.9 GeV-2? and used together
with m2 and mZ., gave m, 4 = O(10) MeV, m, = O(200) MeV in Lecture 1, corresponding
to B,a~ 0.01, B, = 0.21, B, ~ 0.9. The correspondence (3.12) and (3.13) between Regge
and crossed channel poles goes deeper: the decoupling of the zero-mass meson can also
be seen as the appropriate zero in the Regge residue as a5(0) — 0.

Before leaving the “Regge” behaviour (3.9) we should note some intriguing features
which one is tempted [12] to generalize to QCD,.
— Intercepts are additive in the quarks exchanged in the crossed channel. Although
the absolute values of the intercepts (3.10) are unrealistic (4-dimensional spin effects?)
the differences are quite reasonable: we find

#(0) —0ge (0) = B~ By = axo(0)—4(0) = 0.2 (3.15)

which relations are not inconsistent with experiment.

— There is an absolute lower limit to Regge intercepts, because of (3.10) and (3.11a).
Other people [61] have conjectured that 4-dimensional Regge trajectories may be bounded
below as 7 — — oo, and Regge slopes are apparently positive, so perhaps a similar limit
applies to Regge intercepts in 4 dimensions [62]. Using the natural hypothesis

aqc—l'(o) = O(eb((:))'*_ﬁu'(" ﬁd "’ﬁq_ﬁq’s

one is led to
2,5(0) = 0 (0)=2 =~ —15. (3.16)
In particular, one might suspect
1) & ~1%,  ap0) & —3. (.17

The relatively high intercepts (3.17) may be good news for people looking for charm in
quasi two-body reactions.
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— Direct channel factorization of the amplitude is a feature not only of the Regge limit
(3.9) but also more generally for s > 0. This results from having just one direct channel
resonance at each mass. We know [63] of no evidence against direct channel factorization
of amplitudes in 4 dimensions [64], and it may be an amusing property to look for.

There is a connection between form factor and Regge powers implicit in Eqs (2.23)
and (3.9). It is not clear this relation should be abstracted for 4 dimensions. As emphasized
during their derivations, the form factor result (2.23) comes from probing the X — 1
part of the meson wave function, whereas the Regge result (3.10) came from the X — 0
part of the wave function [S0]. It is only in the valence qq model of the meson wave func-
tion enforced by QCD, in the 1/N_ expansion that there is a direct connection between
X - 0and X - 1. We may note in passing that the relation (2.33, 3.10) between form
factor and Regge powers is not that advocated by Bjorken and Kogut [65] on the basis
of their correspondence principle.

3.3. A possible analogue for fixed angle scattering

Strictly speaking, our interpretation of (3.9) as indicating embryonic Regge behav-
iour in QCD, is as yet incomplete. While Re A4, and A4,, can be shown to have the same
power behaviour (3.10), what of 4,,? This subamplitude should be asymptotically negligible
as s — o0, ¢ fixed, u > —o0. Since both arguments of A4, become infinite in this Regge
limit, it may well be that for A4, it is the analogue of a fixed angle limit (6 = =). In 4 di-
mensions, all of s, t, u — oo in the fixed angle limit, but only*2 of them appear in any indi-
vidual O(1/N,) subamplitude A4, A, or A,

The limit of A, that we seek can be estimated from Fig. 22 by considering the case

1 }
pi- = 0($>, ps- = O(/5).

Look at Fig. 22a for example: the large incoming p,— must be routed across the diagram
via the gluon, which necessarily has momentum O(s), so that the propagator contributes
a factor O(l/s) to the integral

- p2-
~(k_ -~ _—k_
Ao =g [ ke [ gt (——) o (3«——)
Py~ P2
0 0
~ -k - k_
() ()
% Pai- Py~

(Py—+pr-—k_—k_)*
The k- and k_ integration regions in (3.18) are clearly both 0(1/\/5). Also, the large mo-
mentum transfer across the diagram forces the b quark emerging from meson 1 to carry
essentially all its momentum: this induces a wave function boundary suppression O(s™%).

Similarly there is a factor O(s~#°) from the vanishing of ¢‘§§. Over-all then, Fig. 22a behaves
as [10, 12]

(3.18)

§T2Pambe (3.19)
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in this limit. In the other diagrams of Fig. 22, there are different possible routings of the
large momentum across the diagram, all of which have the s—2 factor in (3.19), but with
all possible wave function suppression factors:

‘_z_ﬂu_ﬂh’ S-Z‘Du‘ﬂc’

s ‘_z_ﬁa_ﬁd’

3 —Z—ﬂb-ﬂc’

S
S_Z_ﬂb—ﬂd and S—Z_ﬁc_pd. (3.20)

The result (3.20) indicates that |A,,| < |4, |4,,] in the “Regge” limit s — oo, 7 fixed,
as we wanted. As far as the fixed angle interpretation of (3.20) is concerned, the renormal-
ization powers s~ # may be an artefact [50] of QCD,, as was suggested in the discussion
of form factors in Section 2.3. In any case, fi, 4 are very small and no-one has thought
of a realistic case where none of the different combinations in (3.20) would involve u or
d quarks. Notice that because all the diagrams in Fig. 22 contribute, with a motley collec-
tion (3.20) of powers, the fixed angle cross-section cannot be written as a simple product
of form factors [66], and the relative normalization of form factors and fixed angle behav-
iour is non-trivial [28]. Like the form factor [8], fixed angle scattering in QCD, is not
a pure short distance process, but is essentially renormalized by long distance effects.

3.4. The Pomeron?

As mentioned in Section 1.2, the O(1/N?2) diagram shown in Fig. 8d is expected [31,
35, 36] to yield the bare Pomeron singularity. This happens in the dual resonance model
[38], and phenomenological models based on the same diagrams have been proposed in
the context of QCD [67]. In the dual model, the Pomeron can be thought of as the exchange
of a cylinder or closed string (Fig. 9b). In QCD, one expects the exchange to feature
‘““polyeikonalized” gluons (Fig. 9c), and the spin 1 of the gluons then suggests that ap & |
in some approximation. In the dual model the cylinder is a more or less normal Regge
trajectory, with particle poles. Such “Pomeronium’ particles are also expected in QCDy,,
because gluons are expected to form bound states (“gluonium™) just as quarks form qq,
etc., bound states. (Consider a world with gluons but no quarks: presumably colour is
confined in the same way as in the real world, because the infrared properties of theory
are independent of the existence of massive particles. If such a theory is non-trivial, its
states can only be gluonia: detecting their analogues in the real world is a different kettle
of fish {39].) Dual and QCD, models suggest that ap ~ O(1) ag [68], so that the Pomeron
trajectory should pass J = 2 when ¢ = 0(+2) GeV?. Mixing between the f, /' and Pomeron
trajectories would be very complicated in this region, but presumably dual models or
QCD, would predict three I = 0, C = +1 trajectories and three J = 2 states. On the
other hand, in a more general dual framework, the bare Pomeron may be regarded as the
shadow of non-resonant two cluster production. There is no obvious reason why the
Pomeron would have crossed channel particle poles [69], or why the Pomeron intercept
should necessarily be 1. Indeed, Chew and Rosenzweig [69] and others identify the Po-
meron and f, so that they only have two I = 0, C = +1 trajectories. The two clusters
may be regarded as coming from cutting along two generators of the dual cylinder.
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To study the nature of the Pomeron in QCD,, we study {10, 12, 13] the imaginary part
of Fig. &(f), which has the structure indicated in Fig. 9(a):

t J dMidM3

ImA = PN !A,“(S, M%s NI%)lza (321)

| 27 M D)

where A is the usual phase space function. The general expectation is that the integration
regions where M3 and M are both finite would give something like a Regge-Regge cut,
but subject to the usual Mandelstam cancellation, whereas the region

M2M3 = O(m?s) (3.22)

should give Regge pole renormalization and break exchange degeneracy. The region
Mi = 0(s), M3 = 0(s) (3.23)
should give a new Pomeron singularity according to the dual model/QCD, ideology

discussed earlier. In the limit (3.23) the phase space integral

dM3dM3 ,
—orr = 0(s) (3.29)

and if we work in the centre-of-mass frame:

Pi- =S, po® ‘\'?’
it happens that
ez _om, 2= <o (3.25)
Py~ Py

Hence both the quark and the antiguark from meson 1 must carry a finite fraction of its
momentum. One might therefore naively expect 14,,| = O(1), as there would be no sup-
pressions analogous to (3.10) coming from pushing quarks close to X = 0 or 1. Equations
(3.21) and (3.24) would then yield Im A4 = O(s), and a Pomeron with J = 1.

There are 11 diagrams contributing [10] to 4,, in x_ “time”-ordered perturbation
theory, which are shown in Fig 24. Let us consider as an example the diagrams 24(d).
Using the graph rules alluded to earlier, and developed in more detail in Refs [8, 12], their
sum can be written as

dnm? . dac XY X’
Alu(d) == ﬂZ{(_p} - )J\dXJ‘dX, 17( )¢n( ) .
N, Pr-—Py- Proo ,
(X —_— +X)

n 0 [} —
Py~ — Py~

y [ ” ((pl_—py-)(l—X’)> g ((pl-—p11~)+p1,_x>]}
1 Pi- ! Pi-
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L (ph—qnu>fdyfdy, GE(Y ()
t—m,f D2 J (YP1~_P1'- +Y')2
) -
Pa2-

. [ b (1’_2:(1_:_9) i (”2“*(”1‘“”"'))] (3.26)
2 Py - 2 Po— .

(ey) (e,)
(e,) (e}
Fig. 24. “Time”-ordered perturbation theory diagrams for Ay
The integral over each individual product of six wave functions ¢ in (3.26), each correspond-

ing to an individual diagram of Fig. 24(d), is O(s°) but there is a cancellation. The leading
behaviour comes when the gluon propagators are “‘soft”:

, m? m?
x=o(™), x=-of(™ (327)
s s
In this case

[ l;; ((p1—_p1’—) (1—X')> . ,;; ((P1——P1'—)+P1'—X):| -0 (T_z) (3.28)
Pi- Pr- ’

and the full integral (3.26) is actually O(s~).
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A similar cancellation can be shown to apply to the set of diagrams in Fig. 24(e).
In both cases the cancellations arise between pairs of diagrams related by flipping a gluon
between the quark and antiquark emitted by.the fast meson 1. The relative — sigas in
(3.26) arise just because quark and antiguark have equal and opposite colour. There is
also a cancellation between Figs 24(a), (b) and (c), which can also be understood as related

i
Fig. 25. Glue-flipping

to gluon-flipping, as indicated schematically in Fig. 25. These cancellations mean that
the integration region (3.23) does not give a Pomeron singularity, and are ~s~! at most.
The cancellations do not however apply in the region (3.22), and QCD, does indeed
exhibit Regge pole renormalization and exchange degeneracy breaking [12, 13, 70]. The
model therefore realizes the ideas of Chew and Rosenzweig [69], rather than the three-
trajectory suggestions of dual models and QCD, [35, 36].

However, the QCD colour cancellations (3.28) can be seen [12, 13] as very specific
to two-dimensional kinematics. In two dimensions, the coloured quark and anticoloured
quark can have no transverse separation. On the other hand Lorentz contraction allows
them no longitudinal separation at high energies. Hence the colour fluxes emanating from
the q and q will interfere and cancel. This would not happen in four dimensions where
the q and g can separate in transverse space [67, 71]. Another way of looking at the can-
cellation recalls that in two dimensions there are no dynamical gluonic degrees of freedom,
hence no gluonia and so no particles to be supported by a Pomeron Regge trajectory.
In QCD,, where hadrons have a transverse size, and gluonium states may exist, there
is no obvious reason for cancellations like (3.28), and we may still hope that the Pomeron
will exist as a third / =0, C = +1 Regge trajectory.

3.5. Inclusive hadron reactions [12]

Many people [72] have observed an appearance of universality between final-state
hadron distributions in lepton- and hadron-induced reactions. It is natural to ask whether
some such effect manifests itself in QCD,. This question can be studied using ideas similar

1 M 1 ><M 1><CM
; 2'> C)( 2 X 2 X
(a) (b} (¢)

Fig. 26. Quark diagrams contributing to o(1+2 - M+X)

2

to those developed in Section 2.6 in connection with e*e~ - M+ X. Consider the non-scal-
ing s**~ ! Mueller-Regge [73] contribution to the hadronic inclusive reaction 1 +2 - M +X,
where some relevant quark diagrams are indicated in Fig. 26. Argumentation similar
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to the ete~ case [9] tells us that a dominant contribution in the I/N, expansion comes
from Fig. 26(a) which has direct channel resonances. Their peaks, when appropriately
smeared, enhance the cross-section by a factor N, as required by the unitarity sum rule

AR enge

ORegge(1+2 = X) = E J'dXFXF ll;(gg (1+2 > M+X) (3.29)
‘

M F
and the observation that the leading contribution to 2-2 meson scattering is O(1/N,).
The identity between the direct channel resonances in hadron-hadron and e*e~ colli-
sions suggests [12} a close relation between final state hadron distributions. Using the

appropriate limit
m%

mZ, m3 —» o — = (1-Xy) fixed, (3.30)
m

n

of the vertex function Gy, given in (3.2) one finds that Fig. 26(a) survives and gives

1 AOgegge(14+2 = M4X) ,
Xy —t = Z DXy, (3.31)

Ogegeel1 +2 = X) dX¢

a

where the sum runs over the quark and antiquark in the resonant state, and D, w(Xp)
was defined in Eq. (2.38).

It can be verified that the inclusive distribution (3.31) has the appropriate triple-Regge
behaviour as Xz — 1. Unfortunately the analogue of (3.31) for the scaling Pomeron contri-
bution to inclusive hadron distributions cannot be written down in QCD,, because of the
debacle of the previous section. Therefore QCD, gives no reason to expect universality
between scaling distributions in hadron- and lepton-induced reactions [72]. Instead a sort

of convolution model [12]
1

d 142> M+X “ ” X
Tpomeron(1 +2 > M+X) ( dY ) P Y)Dyoy| — (3.32)
dXe Y

a Xe

would seem to indicated by the diagram of Fig. 8(f), where P,(Y) is a quark probability
density, given by [¢2*(Y)}? in QCD,, and D,y is a quark fragmentation function analogous
to (2.38) in QCD,. The integral in (3.32) is written in quotes because there must presumably

be some reference to transverse degrees of freedom, and the bare Pomeron actually vanishes
in QCD..

3.6. Conclusions

Let us finish by summarizing what has been learnt about strong interactions in studies
[5~13] of QCD,, making some remarks about the likely implications for QCDy,, and also
remembering some outstanding problems to be studied in QCD,. Going back to the various
hadronic ideas listed in Section 1.2, which we have attempted to test in QCD,, we may
say the following.
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Spectroscopy

Quarks indeed seem to be absent from the spectrum of QCD,, as one might naively
expect. There are infinite sequences of mesonic bound states, reminiscent of Regge trajec-
tories. States made of light quarks show remnants of chiral symmetry [18], and bound
states of heavy quarks show traces of charmonium [22] ideas. These topics were studied
in Section 1.6.

Asymptotic freedom

The ideas of scaling with canonical behaviour resulting from free quark light-cone
and short distance singularities were explicitly verified [2] in QCD, (see Sections 2.2
and 2.4). The long-distance confinement mechanism did not affect the perturbative “as if”
calculations of the naive parton model [25] for the reactions [3].

““Hard” processes

Some of the ideas about large momentum transfer processes not obviously related
to short-distance effects worked, but others were less successful. As discussed in Section
2.5, the Drell-Yan qq annihilation model for lepton pair production in hadron-hadron
collisions was verified explicitly. On the other hand, electromagnetic form factors (Section
2.3) arnd “large angle” elastic scattering (Scction 3.3) did not work exactly as suggested
by constituent interchange or hard scattering models [27, 28, 50]. The power laws were
not those suggested by dimensional counting rules [29], but this feature may well be specific
to two dimensions. Of more potential relevance were the renormalizations of short-distance
effects by long-distance ‘“‘rescattering”. These effects gave the same power laws as the
“bare” graphs, but would complicate attempts [27, 28] to interrelate numerically form
factors and fixed angle amplitudes, if they were present in QCD,.

““Soft” processes

As discussed in Section 3.2, the ““Regge’” exchanges in QCD, had all the properties
expected [35, 36] of them in the /N, expansion framework: factorization, dnality, exchange
degeneracy, etc. In addition, some interesting extra properties were found: intercepts
additive in quark quantum numbers {74], a lower limit to Regge intercepts for very massive
quark-antiquark trajectories, and dircct as well as crossed channel factorization. On the
other hand, there was found (Section 3.4) to be no new *“‘Pomeron’ singularity [31, 69]
arising in O(1/N?) with I = 0 and unrelated to qq bound states. This may well be an arte-
fact of two dimensions. Turning to inclusive reactions, we saw that universal quark frag-
mentation into hadrons might be true not only in deep inelastic reactions (Section 2.6) but
also in hadron-hadron collisions (Section 3.5). A sort of inclusive Watson’s theorem?

The above list of topics studied in QCD, docs not mean there is nothing else to do.
For a start, there are many formal questions to be resolved, such as
— the formulation and consistercy of QCD, in other gauges [70],

— a rigorous proof of quark confinement,
— proofs of analyticity for form factors and scattering amplitudes [75].
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There are also more phenomenological applications to be studied, such as

— more detailed studies [47] of heavy quark dynamics, charmonium and the like,

- mass corrections [53] to Bjorken scaling in deep inelastic scattering,

— the 4l = § rule,

to name but a few. Also, a general study of higher order effects in 1/N, would be valuable,
to probe the nature of “‘sea’ quarks, search for a Pomeron in higher orders, and see whether
other lowest order I/N, results are qualitatively altered.

But the 64,000 zloty question is of course how one may use QCD, as a stepping
stone to calculations in QCD,. Is it useful to formulate QCD, on a transverse lattice [76],
and use QCD, results as an input to higher order calculations? Is it profitable to pursue
the analogy of QCD, to a string model [17] in higher dimensions? Is it possible to refor-
mulate the naive covariant parton models so as to incorporate [77] the lessons learnt
about quark confinement in QCD,? Can one construct any sort of 24¢& [78] expansion
for QCD? I don’t know.

Much of this review is based on work done in collaboration with Rich Brower, Michael
Schmidt and Joe Weis. I am very grateful to them, and Marty Einhorn for many discussions.
It is also a pleasure to thank Jochen Kripfganz, Jack Paton, Chris Sachrajda, Gabriele
Veneziano and T. T. Wu for discussions and comments on the manuscript.
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