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MASS SCALE EFFECTS IN THE PARTON MODEL
By D. M. Scorr*
Rutherford Laboratory, Chilton, Didcot
( Presented at the XVII Cracow School of Theoretical Physics, Zakopane, May 27 — June 9, 1977)

Using parton models which scale asymptotically, we discuss the role of parton and
target masses in the approach to scaling, the transverse momentum of partons, and the shape
of the structure functions.

1. Introduction

The scaling hypothesis in deep inelastic lepton scattering [1] has been the centre of
considerable interest for several years. It is now known from experiments using e, u, v
and v as projectiles that scaling is violated, but a complete theory for the violations is
lacking!. A popular explanation is asymptotic freedom [3] (AF), which certainly gives
the qualitative, and perhaps quantitaiive behaviour of the electron and muon scattering
data [4]). Tt is not yet clear whether the same is iruc for v, v scattering, where a new, bottom,
quark with right-hanrded couplings may be necded {5].

The parton modcl [6], with its pointlike couplings between electromagnetic or weak
currents and quark-partons, gives exact scaling asymptotically. However it is relevant
to ask how any parton model approaches its asymptotic form, as this may be the source
of important scaling violation cffects. Here we discuss two approaches to this problem.
The first emphasises the importance of charm production in deep inelastic electron and
muon scattering. In the second we investigate the effects of the masses of the partons and
hadrons involved, first in deep inelastic leptoproduction, and secondly in high energy
hadroproduction of massive lepton pairs. We conclude that these mass scale effects may
generate a substantial proportion of the scaling violations observed in leptoproduction.

The masses of the interacting particles can aiso play an important role in determining
the asymptotic shapes of quantities which scale. In particular the mean square transverse
momentum of partons (k%) has been the subject of a number of recent investigations.
The dependence of (k3> on the parton’s fractional longitudinal momentum x is siill not
certain. First we discuss the experimental importance of (k%). Then we have a look at it

* Mailing address: Department of Physics, University of Wisconsin, Madison, WI 53706, USA.
' A list of possible candidates has been discussed in Ref, [2].
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in a simple parton model, and in a simple sum rule for the mean square charge radius
of the neutron, finding an interesting conflict. Last of all we show how parton and target
masses can affect the shapes of structure functions, using the same simple parton model.
In particular, we show how a structure function which behaves like Fa(x) ~ (1-x)* as
x - 1 can look like Fo(x) ~ (1—x)* for x <C0.85, which is the relevant experimental
range.

2. The approach to scaling

In Fig. 1 we show the diagram for deep inelastic leptoproduction, where momenta
are defined. We define the usual variables

p2=M29 sz-qz, v=p-4,
w=2v/0% x=1lw 2.0

lepton

p

Fig. 1. One photon exchange diagram for deep inelastic lepton scattering

and the usual structure functions

1 .
Wi = - Jd4xe’q"‘<m [7.(), T (O] |p>
T

q,uqv v v W2
={ - W - = - = 4y} —5 . 2.2
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The scaling hypothesis is

W, = Fi(x), vW,/M? > Fy(x) (2.3)
in the Bjorken limit v — o0, x fixed.
2.1. The data

Detailed discussions of deep inelastic electron and muon scattering data are given
in Ref. [4]. Since then more information from the Chicago-Harvard-Illinois-Oxford
(CHIO) collaboration has appeared [7]. The situation is summarised [8] in Fig. 2, where
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the structure function F,(x) is plotted for various values of Q2. This behaviour has been
neatly parametrised by {8]

Fy(x, 0%) = Fy(x, 03) (Q*/Q3Y ™, (2.4)
T T T T T
081 ——a<akns
— 5<Q% 8
2
05\ o-no..2<Q<5

-1 Q%<2
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0.3
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0

Fig. 2. Behaviour of the structure function F,(x) for different values of Q2

where

02 = 3GeV?,
f(x) = 0.25—x, 2.5)

which works quite well for 1 < Q% < 40 GeV?2,
This shows that as Q2 increases, F, decreases at large x and increases at small x,
which is just the AF expectation. Equation (2.4) is not consistent with AF, though.
Finally we note that mnch detailed quantitative work has been done comparing AF
to the data [9]. But here we will look for other sources of scaling violations.

22. Is charm production important?

Photoproduction is a good place to look for charm. A charmed baryon has been
found there [10], so it must be. Typical estimates give at high energies

N — Che
i(_)_’_’—d@,) ~03-1%, (2.6)
o(yN — All)
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whereas the corresponding fraction in hadroproduction is (0.3—3) x 10-2%/. If this is so,
what happens in virtual photoproduction? If we assume scaling, and that the appropriate
vector meson sets the mass scale, then

O;(')J*(QZ)N — Charm) _ 1+(Q*/m}) o(yN — Charm)

a(P*OHN = Al)  1+(Q%m?)  o(yN — All)

02~ My o(yN - Charm)
Xy g

N oA Q.7

(5]

m ¢

Note that mf,/mj = 16 is a large number. So when Q72 increases the signal/noise ratio
in.creases significantly even though the rates for both signal and noise are separately reduced.
It is then likely that at high Q2 the charm cross section in virtual photoproduction will
be a substantial part of the total.

In order to be above the charm threshold W, we require

W2 = (p+49)* = M +Q%w—1) > Wi (2.8)

So charm is first produced at large W2 which means large Q? and large o. It gives scaling
violations because of the threshold which is fixed in W2, and because above threshold scaling
is not immediately attained: 6(y*N — Charin) ~ (Q2+m,§)*‘. So for a fixed beam energy,
charm production will affect F, at large o (small x), and will become more important at
fixed w as Q7 increases. This sort of effect is observed in the data. Let us try to make the
discussion a little more quantitative.

In the parton model, we assume that charm is produced from charmed and anti-
~charmed quarks in the gq sea. The strongest assumption about the relative sizes of different
components of the sea is SU4 symmetry. This would give a 679 rise across the charm
threshold, at small x where the sea is dominant. In analogy to (2.7) we may give the sea
quark distributions a Q2 dependence, with mass scale fixed by the appropriate vector
meson:

QZ

. 2y
./i(x’ Q ) - Q;>_+,"i2,

fi{(x). (2.9)
The vector meson is made from quarks ii. With this one is able to give a reasonable quanti-
tative explanation of the rise with @% of F, at large w, small x.

So far we have argued by a sequence of guesses. In the next section we try to get
somewhat more quantitative results by making a different sequence of guesses in the guise
of generalised vector meson dominance (GVMD).

2.3. Just how important?

In reference [11] a detailed GVMD/parton model discussion of gq sea distributions
is presented. The conclusion is that the 02 dependence is given by

0? 0% +m?
xfi(x) = e (2, —Ar—n—z—-)f(x) (2.10)
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Here m is the mass of the lightest vector meson made of the bound quarks 7i, Am? is the
splitting between that meson and its first radial excitation, and { is a generalised Riemann
zeta-function

o

1 X on 1

0(2,x) = (—'T:*“;j —*-€ (2.11)

n=0

This shows explicitly that bound state hadronic effects (i.e. vector mesons) control the
approach to scaling of the sea distributions in deep inelastic scattering. At asymptotically
high energies and momentum transfers, all mass scales are forgotten and the sea becomes
SU4 symmetric.

Evidence supporting (2.10) has been presented in Ref. [11]:

(/) The Michigan State-Corneli-Berkeley-La Jolla [12] 150 GeV g experiment shows
a rise of v, with Q? at large w. This rise is consistent with (2.10).

(ii) The Chicago-Harvard-Illinois-Oxford [7] 147 GeV u experiment shows a similar rise
and also a fall of v, with @ at large  (w = 100—1000). W, ~ Q2 for small @2, and
high w at fixed energy implies small Q. The data are consistent with the fall given by equa-
tion (2.10).

We now discuss another test for (2.10). This is the rise of v, with 0? for @ = 9— 600,
recently reported by CHIO {13]. They have made a detailed fit [14] to low Q% SLAC
[15] data using GVMD parametrisations. These parametrisations have a controlling mass
scale of mf—l GeV?, consistent with the data being below charm threshold. The cross
sections are separated into diffractive and non-diffractive parts, and from the former
we can normalise the sea quark distributions at 0*> = 0, w = o0. This gives

YW, [M*(Q?, @ ~ ) = 0.26. 2.12)

In Ref. [11] we predicted the normalisation vi¥,/M?* = 0.25 by using (2.10) down to Q2% = 0,
and comparing with photoproduction cross section data (this will be explained later).
This gives a further test of these ideas. With (2.12),

xg(®)l=o = 0.20. (2.14)

We now make the approximation xg{(x) == constant for small x, and simply add in the
charm component, with Q° dependence given by (2.10). This is relevant at Fermilab
energies.

The results are shown in Fig. 3, where the fit to SLAC data is given by the dashed lines.
After incorporating charm production we obtain the solid curves. The conclusion is that
the rise of vW,/M? is consistent with the data being above charm threshold, the charm
production being controlied by the scale 0% ~ muz,, such that asymptotic SU4 symmetry
of the sea obtains as 0% — co. The whole of the rise of vIW,/M? at high o is associated
with charm production. This is a crucial difference from AF.

We conclude this section with some remarks [11]:

(/) The Q? dependence given by (2.10) is quite similar to Q%(Q*+m?).
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(i) Let us make the already mentioned connection with photoproduction, by putting
0% = 0. The cross section for transverse photon scattering on a nucleon is

4dr*a 4’ v ) )
or = L2 1T 102 A3 e; xfi(x, Q%) (2.15)
v=30 v—=2Q"Q
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Fig. 3. Data on eP — eX (@ from SLAC, Ref. [15]), and 4P — pX (B from Fermilab, Ref. [13]). The
dashed curve is a fit to SLAC data. The solid curve is the prediction from equation (2.10)

So now we may put Q% =0

) , 1 m?
o(yN) = {475 a Z iy ¢ (2, m)} {xf(0)]x=0}- (2.16)

H

Putting o(yN) = 100 pb we obtain

xf(x)ix=0 = 0.19, (2.17)
which means that
F(o = 00) = {8'3 :’;?VVZ} charm threshold. (2.18)

Further if we associate s and s with strange production, and ¢ and ¢ with charm
production, equation (2.16) gives that

o(yN — Strange) ~ 8 ub,
o(yN - Charm) =~ 2} ub. (2.19)
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The result for s‘range production has a little experimental support [16}: for s = 6-18 GeV?,
o(yN — Strange) ~ 8.5 pb. The result for charm production seems rather large. This
is partly so because the contributions from all the »’s radial excitations have been added
up. The contribution from the u (3.1) alone is ~ 800 nb.

(7if) Consider electron and neutrino scattering on an average nucleon N = 1 (proton
+neutron). For SU3

, 2x s+5  Sx u+d s+s
F?::%{F?—A—«_f—-mfm(—“w———)}<1£FT. (2.20)

This is the well known result of Llewellyn Smith [17]. Now in SU4,

= 0, exact SU4,

2.21
> B FN if ¢ = 0. 22D

FP =g {F2N+ Z 9= (c+5>}{
6 6
So the relation between F3N and FEY depends critically on the kinematic situation, that
is how much charm in the sea, and how far above charm threshold. Probably the best
that can be said is that as the strange part of the sea is relatively small for most of the
x range, Fy' ~ 18 FeN,

2.4, Let us put in the masses

In this section we study the approach to scaling in the parton model by attempting
to take account of parton and hadron masses in calculating the dominant “handbag”
diagram, shown in Fig. 4. This exercise has been carried out by many people, both in the

q

P

Fig. 4. The dominant parton model “handbag” diagram for deep inelastic lepton scattering

parton model and AF. A discussion and an extensive list of references is given by Barbieri
et al. [18]. Here we give a new derivation in a simple parton model [19], and then use the
method in the next section to study the approach to scaling in the hadronic production
of lepton pairs [19].

We wish to calculate the non-leading terms in Fig. 4. There are two main, and probably
related problems: (i) Fig. 4 is only gauge invariant to leading order, and (ii) non-leading
terms from diagrams where the parton carrying momentum (k + ¢q) interacts with the system
carrying momentum (p—k) may by relevant. We bypass the first problem by calculating
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with scalar currents and partons. We cannot say anything about the second problem.
Because of this, all we can hope is that the answer gives the qualitative behaviour of the
approach to scaling.

After all this, we have to calculate (Fig. 4). We use the covariant parton model [20].
Then

W, M2 = - [ d*ko(a)f(k2.5")
n

o= (k+q)? s =(p—k)? 2.22)
Here o is the spectral function of the parton which has absorbed the current:
jg(a)da =1, (2.23)

and f'is the imaginary part of the forward elastic hadron-parton amplitude. It is convenient
to change the integration variables from k to &, n and the two-dimensionai vector ky
transverse to p and g:

=g+ 22l 0) pv L gk
h 2Mzan p 2vaq e

M2q2 1/2
=(1_ 2) , (2.24)

V

The nice thing about this is
{d*k = % [ dédnd®ky,
kK = in+EM* =k,
(k=p)* = E=Dn+(E=1’M*~ki = 5, (2.25)
where we have defined k3 > 0. With this change of variables,
vWyo/M? = L | dk*dEdndiidods o(o)f(K2, s')
x S[(E— D+ (&~ 1)*M? — k2 —5'18[5 +n+(2E— NM* —k?]

K —%{k?~s' — (26— 1)M?} —0‘]

5 (2.26)

xél:é—x+

& 2x (1)
X= - =x40(—]).
a+1 v

The only explicit dependence on v is in the last d-function. We expand this in a Taylor
series as

where

6(A+ f—) = 8(A) + B S(A)+ ... (2.27)
v 4
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With this the ¢ integration can be performed, yielding

5 xM? —x*M? 1
VszM == 1"‘ I Fz()\) -42“7#" Fz(\)+0 —2)

2xM*\'/? 00— X*M? 1
= ¢ 14 Folx+ ——— 40| = |, (2.28)
v 2v y
where
Fy(x) = 4 [ ds’dk*f(K?, s")O(k%)
k3 = —(1=x)k*—xs'+x(1-x)M?, o, = | dooo(o). (2.29)

This is the same as the results of Ref. [18], where the initial and final partons are put
on mass shell. This is not allowed by relativistic kinematics, and differences appear in
higher orders. There is a discussion in Ref. [19].

What are the phenomenological consequences of expressions like (2.28)? For large
x, and for u, d quarks with (presumably) m3 ~ 0.1,

0o —x*M?
- - <0 (2.30)
2v

The fact that F,(x) seems to fall quite rapidly as x increases towards 1 means that as Q2
increases at fixed x, F,(x, Q*) falls. The phenomenological analyses of Refs. [18, 20] have
suggested that the fall is not fast enough. However, because we are uncertain of the validity
of the procedure, we optimistically take this result to be encouraging.

2.5. The Drell-Yan mechonism

The cross section for pp — I*[-X was first calculated in the parton model by Drell
and Yan [22], for the mechanism shown in Fig. 5. The cross section is

do

e ), W= [dxdyd(xy—1) Y eEFAF5().  (2.31)

Fig. 5. The dominant parton model Drell-Yan diagram for pp — I*l-X
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Here v = py - p,, the factor (}) is for colour, and the sum is over quarks and anti-
quarks.

As in the previous section, we use the covariant parton model [20] to calculate the
next to leading order contributions to the dominant diagram, using scalar photon and
partons. The problems and uncertainties discussed for leptoproduction are here too.
However, we still calculate [23, 24]

v
2

W v) =53 jd“kxd‘sz(kf, SOf (k2 s2)0[(ky +k2)* — 7], (2.32)

s; = (pi—k)? i=1,2.

As in (2.22), f'is the imaginary part of the forward elastic parton-hadron amplitude. The
bar appears on the second function because k, is an antiparton.

The calenlation of the leading and next to leading terms follows that of the previous
section. We find

Wi(t) 1
W(z, v) = Wy(1)+ +0{—], (2.33)
2v v
where
Wo(t) = | dx dx,F(x,)F5(x3)8(x, %, —1). (2.34)
To find W,(r) we put, for ease,
fU2, 5"y = f(K*)d(s' —s0) (2.35)
and similarly for f, and then
1 . x? 2 0
Wi(7) = — | dxdx,0(xx; — 1) { —— [30“(1 “'xx)le]
T 1—x, 0

Xy

2
! [so—(1 —xz)Mﬁ ‘(z“} F(x)F5(x). (2.36)
X, 0x,

To estimate the magnitude of this correction, we use the parton distributions of Ref.
[25]. In Fig. 6 we plot — W (1)/Wy(1) for two choices: s, = 5o = 1 and s, = s, = 4.
Note that the correction is negative, and can be large.

So far in this section our discussion has considered the production of lepton pairs.
The Drell-Yan parton-antiparton annihilation mechanism has also been used to describe
the hadronic production of J/y, which is assumed to couple in a pointlike manner to the
parton and antiparton which produce it [25, 26]. At high energies the dominant subprocess
is thought to be cc - J/y. Taking the charm sea distributions of Ref. [25] we plot
— W,(1)/2vWo(z) against s for the two choices of 55, 5 in Fig. 7. These are the solid lines.
To get an estimate of the scale breaking for the Zweig-violating subprocess gq — J/v,
g = u,d,s, we replot the corrections in Fig. 6 for virtual photon production, with
g* == 9.58. This is shown by the dashed lines in Fig. 7. Again the correction is negative,
and can be large.
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GeV2

-, /W,

0 05 1
r:q%?v

Fig. 6. — W,/W, from equations (2.34) and (2.36) for the two choices 5o = 5o = 1, and 5o = 5o = 4 GeV?
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Fig. 7. Corrections — W [2vW, for Drell-Yan production of J/y. The solid lines are for cc annihilation.
The dashed lines are for virtual photon production with g = 9.58 GeV?
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Note that the sub-asymptotic effects in deep inelastic lepton scattering, and in lepton
pair production are controlled by rather different features. For deep inelastic scattering
the important parameter is the mass of the parton after it has absorbed the virtual current.
For lepton pair production the important feature is how far the partons are off shell before
they annihilate. This requires extra information about the dynamics, and is related to the
transverse momentum of partons in a hadron, as we will discuss later.

A very simple model has been used, but it is found that the corrections to the Drell-Yan
formula, obtained by retaining masses and transverse momenta, can be large. If the esti-
mates we have made are representative, then tests of the Drell-Yan formula at present
energies cannot be made very precisely.

3. kT and F2

We now consider the shapes of some distributions in the scaling limit. We hope to show
that here too the masses of partons and hadrons may play an important role.

3.1. Why is kp interesting?

Experiments on the hadronic production of high mass lepton pairs [27] have discov-
ered that {pg),- rises with nz,,-, as shown in Fig. 8. If the Drell-Yan mechanism,
Fig. 5, is responsible for the production of the lepton pairs, then this can be interpreted

1 i 1
0 4 8 12

Muuy GeV

Fig. 8. Data on pC — utu~X at 225 GeV (@), and on pCu, pBe - utu~X at 400 GeV (W), Ref. [27]. The
curve is from equation (3.4) with 6 = 4.5

to mean that the average transverse momentum of partons in a nucleon increases with
increasing x. This can be seen as follows.
The relevant diagram is Fig. 5. Let k; o~ x;p; fori = 1, 2, so that

s = (p1+p2)* =2,
g% =~ (xp;+%,p,)% > x,x, 2V, Xp = Xy —X,. 3G.1D
At xg =~ 0, which is the case experimentally,

X = X3 > g/\/s. 3.2
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Further,
pPoren- = kyp+kyn))® = ki +<k3p. (3.3)

A rise of {pr>.- with ¢ may, via (3.2) and (3.3), be interpreted as a rise of (k;) with x.
It can be seen from Fig. 8 that quite high values (ky> 2 0.5 GeV, are required in order
to explain the data.

Let us give two warnings about this deduction:
(i) The effect may not be a rise with x, but simply a rise with ¢? coming from something
like AF [28]. Increasing ¢> probes smaller distances, producing greater pi.
(ii) The effect may be a manifestation of hadronic mass scales [11]. A typical hadronic
parametrisation is

— e ™, mi=piiq’ 3.4

This expression gives a {pry,— which increases with g2, and the result for b = 4.5 is
shown in Fig. 8 by the solid line.

In analogy to the scaling hypothesis for deep inelastic lepton scattering, it has been
proposed that inclusive hadroproduction cross sections for large py secondaries behave

as [29]
do I Pr
E— ~ —-F{—,0}. 3.5

&*p pr ( s ) )

Experimentally the power of p; ! does not seem to be 4 [30]. For mesons it seems to be ~ &
and much work has been done on models which yield this power [31].

Recently the CERN-College de¢ France-Heidelberg-Karlsruhe group [32], as well
as producing data in support of high py jets, proposed a detailed model for hadroproduction
at high py. This mode! is based on quark-quark scattering by vector gluon exchange, so
that asymptotically (3.5) holds. But the transverse momentum spectrum of the initial
quarks is wider than expected. A specific calculation [32] with (k1> = 3/4 GeV suggested
that in the range of p; measured 2 < py < 5, the effective power of (p1 ) is 8. The assump-
tions and approximations used are now under scrutiny in many places. However it is
clear that a careful study of the effects of parton transverse momenta in high pr physics is
required. The first attempts have shown that this may be important phenomenologically.

3.2, What ky did

Attempts have been made to estimate k(x) in the parton model [33-35] Fig. 4. The
fact that the parton carrying momentum k is off shell means that its average transverse
momentum depends on x, its fractional longitudinal momentum. We have already calcula-
ted Fig. 4 in the Bjorken limit, Eq. (2.29). After putting in a factor x for spin [20] and
dropping numerical factors we get

Fy(x) = x [ ds'dk*f(k*, s)0(k3), ki = —(1—x)k?—xs'+x(1 —x)M>, (3.6)
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We reiterate that this is a scaling result, and that we are not considering subasymptotic
corrections.

The next step [34] is to make a simple model for the forward elastic hadron-parton
amplitude f:

fo L) (3.7)
(—k“+mg)

This assumes that f has a strong maximum at some value s’ = s, which is independent
of x. This cannot be true for all x, for in order to get the appropriate Regge behaviour
for x — 0, F, ~ const., one needs s' ~ x~!. However (3.7) may be reasonable for x not
too close to 0.

Plugging (3.7) into (3.6) we find

Fo09) Cx [ 1=x ¥
X) = —. i
2 1—x "Lk +A(x)

1 L=x 7] 2 2
5 Cx 200 | A(x) = xs55—x(1 =x)M*+ (1 —x)mg. (3.8)

Now it is clear why the power of (—k?+mg)~" in (3.7) was chosen to be 4. It gives
F,~ (1—x)® as x — 1. We will return to this later in section 3.5.
From (3.8) we compute

ki) = 5 A), (3.9)
and so in this simple modcl (ki(x))> depends on the two parameters s, and mZ, and
kix =0y = $mg,  (ki(x = 1)) = § s (3.10)

By making a suitable choice of these masses [34], for example m? = 0.1 GeV?, 5, = 4GeV?,
we make (k%(x))> rise monotonically in [0, 1]. The calculation is dubious for small x,
as we have mentioned, but there we can invoke the pp —» pr X data, to conclude that
the average transverse momentum of partons in a hadron increases with x.

From (3.8) we obtain the distribution in k% at a given value of x

dN(x, k1) 3[4(0)]°
dkr  [ki+ AT
An exponential form for this distribution is often assumed, but here the power law de-

pendence on kZ follows from the power law behaviour F, ~ (1 —x)? and x ~ 1. Of course
the precise form depends on the details of the model.

(3.11)

3.3. What &y did next

The mean square charge radius of a nucleon {#*} is defined in terms of the derivative
of the electric form factor:
dGg oy

: =l (3.12)
dQ* g2 =0 6
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It is a common belief, which we do not question here, that this definition is equivalent
to the non-relativistic definition
iy = [ dPro(r)r?, (3.13)
where o(r) is the charge density at the point r. Experimentally [36],
e = 0.70 fm? = 180 GeV ™2,  (rPdy ~ —0.12fm? = —3.1 GeV™2  (3.14)

There has been some difficulty in quark models in obtaining {r2>y < 0 from (3.13), though
by now several explanations have been proposed [37]. Here we will use a rule first written
down by Pavkovic [38], and used in the present context by Sehgal [39].

Partons in a hadron are described by probability distributions fi(x) from which we
obtain the structure functions

_i = 1 2
F1—2 Fy =3 e; f(x).
X

The charge of the target t is given by
1
Q. =Y ¢ | fi(x)dx. (3.15)
i 0
So the partons’ x dependences are familiar. But partons also have a transverse momentum,

or transverse spatial, dependence. Let the position in the transverse plane be given by
coordinate r, and let the distribution of partons in x and r be given by A,(x, r) so that

hix, r) = f(XINLx, r). (3.16)
Then
[ hix, Nd*r = fi(x) (3.17)
implies
[ Ngx, ryd?r = 1. (3.18)

Just as the target’s charge is given by (3.15), so the mean square charge radius is®

s
~
)
~
i
wjw
O ey P
[
=
Ot 8

d’rr* ¥ ehx, r),

i
(S
o

1
i ,i dxfi(x) <rix(x). (3.19)

Here (rZ(x)) is the mean square transverse radius of parton i at position x.
This is the basic equation. To complete the argument [40] we will make the strongest
assumptions, which however may be relaxed a little.

2 The factor 3/2 comes from rotational invariance.
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First, the gq sea contributions in (3.19) are assumed to cancel in pairs.
Secondly, by the uncertainty principle,

L
(X)) = T (3.20)
' 2¢kix(x)>
and we further assume that these quantities are independent of parton type i.
Consider now a neutron target N, and let u,(x) and d(x) be the valence v and d
quark distributions respectively in a proton. Then we have two sum rules from (3.15) and
(3.19):

0= [ sl 93 ],
0
1
1
<r2>N = \(!‘dx[% dv(X)—é" uv(x)] M‘—(T» . (3.21)

Some people [25] would like the quantity in brackets to be identically zero. This, however
would give {r?>y = 0, and so we choose the other belief which is d,/u, > 0 as'x — 1
1

05 H

0 05 !
Fig. 9. An estimate of %d,,(x -—%,uv(x) for the case d,/u, — 0 as x — 0

With this, [£d,—4u,] is shown schematically in Fig. 9. Note that the areas above and
below the x-axis are the same.
Now take the parton model expectation for (k%(x)D, i.e. {k3(x)) rises with x. Then
(3.21) gives
(riyy = 0. (3.22)
This is the contradiction.
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As we have discussed, there is some evidence from pp — p*p— X that (k3(x)) increases
with x for small x. In order to get (r2)y < 0, we require {k3(x))> to decrease for large x,
so that the negative part of the integrand, see Fig. 9, may be enhanced in (3.21). It is difficult
to be more quantitative. All we can say is that we expect (k3(x)> to decrease for x 2 0.5,
say.

3.4. Another look at {2

The previous section was concerned with the neutron, where small effects and can-
cellations were in question. Let us turn to situations where this is not so — the proton
and n*t. The basic equation we will use is

1
2 30 dy E FU) e
G jdx ‘ e fi{x) TE (3.23)

Even though we expect (k3(x)> to depend on x, we may define an average (k3(x)) by

k> z [3 g dx ¥ e fl(x)]/<r*,
= 0.75 Q,/{r. (3.24)
So from (3.14)

kEyp 2 0.04 GeV?, (3.25)

which is reasonable.

The pion {r2)> is still somewhat uncertain experimentally {41]. Most determinations
give {(r*>., ~ 0.5fm?*, whereas there is a recent Fermilab result [42] 0.33+40.06 fm2.
Taking the former we find

K2, 2 0.06 GeV2, (3.26)

which again is quite reasonable.

3.5. The Drell-Yan-West relation

Drell and Yan, and West have proposed a relation [43] (the DYW relation) between
the deep inelastic structure functions and the electromagnetic form factors of the nucleon.
If Gu(Q%) ~ (Q*)7F as Q% —» o, and Fy(x) ~ (1—x)" as x » 1, then

n=2p—~1. (3.27)

The common belief is that p = 2, and that n = 3, in agreement with (3.27). However
data [44] from SLAC have suggested the possibility that in fact n = 4,
The DYW relation is supposed to hold for x — 1, but experimentally x < 0.85.
Here we show {19] by a simple example that this may already be too far away from x = 1.
We use the simple parton model described earlier in section 3.2, where F,{x) is given
by equation (3.8). Recall that A(x) = 2{k%(x)) increases monotonically as x goes from
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0 to 1. So Fy(x) falls off faster than (1 —x)* as x approaches 1. With the special choices
mg = 1.24 and s, = 2.70 we plot F,(x)/x(1—x)* in Fig. 10, finding that this function looks
reasonably flat over the experimental range (in fact mg and s, have been chosen to make
it flattest). This result is not (0o sensitive to choice of parameters. For quite a wide range of

F (x)/x(l—x)l’, arbitrary units

[T RN SN SN IO NS N B
0 05 7

Fig. 10. F(x)/[x(1—x)*]. Fx(x) is given by equation (3.8) with the “flattest” choices m3 = 1.24, 5o = 2.70.
The qualitative shape is fairly insensitive to parameters

m3 and s, the power 4 gives a better approximation than the power 3 to F,. This is when
A(x) is an increasing function of x for x near 1.

To conclude, if it is true at all the DY W relation is expected to hold only for x near
to 1. Just how near to 1 is not specified. What we have shown here in a very simple model
is that in the presently accessible experimental range x < 0.85, x is not close enough to 1.
The effective power of (I —x) is changed from that at threshold x = 1.

1 wish to thank the organisers for giving me the opportunity to attend the Cracow
School. I am most grateful to F. E. Close, F. Halzen, P. V. Landshoff, S. Matsuda and
D. Sivers. I thank R. J. N. Phillips for helpful comments on the manuscript.
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