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A DYNAMICAL MODEL FOR MULTIPLICITY DISTRIBUTIONS
IN zp~ AND pp-COLLISIONS

By Z. GorAB-MEYER* AND TH. W. RUDGROK**
Max-Planck-Institut fiir Physik und Astrophysik, Munich
{ Received July 16, 1977)

The independent emission model for the production of particles is generalized so as
to include the pion-nucleon interaction in a simplified form. In this new mode!l excited
states of hadronic matter play an important role. Assuming that a thermal equilibrium
between these states is established it is then possible to calculate the multiplicity distributions
of charged and neutral pions. For zp- and pp-reactions a comparison with experimental
results is given.

1. Introduction

In this paper we would like to formulate a model for the production of particles on
the assumption that in the high energy collisions highly excited states of hadronic matter
are created. In order to describe these states we suppose that they can be considered as
the eigen-states of the Hamiltonian which gives the interaction between pions and nucleons.
In general it will be impossible to construct these states. However, by restricting ourselves
to static nucleons and mesons, the problem can be reduced to finding the eigen-vectors
of a real symmetric matrix, which can be solved numerically. As a consequence of this
static approximation it will not be possible to calculate momentum distributions and we
will not be able to determine other than multiplicity distributions and multiplicity correla-
tions. As long as we restrict our considerations to n mesons this static approximation
excludes the possibility to form anti-symmetric pion clusters. In this case we therefore
do not expect to get good agreement with experiment for the neutral-charge correlations,
which are presumably due to cluster formation.

However, by extending our model to include o-production, we find a much better
agreement with experiment.

For each excited state the distribution of the number of charged particles can be
calculated. It is found that the width of this distribution is proportional to the square
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root of the average number of particles, like in a Poisson distribution. This width changes,
however, when for the final state of the reaction we assume a distribution over the excited
states. In fact, by taking a thermal distribution and letting the temperature increase linearly
with the average number of particles, we obtain a linear dependence of the dispersion
on this average number of particles. This well-established “Wrébiewski-relation™ {1} can
be made to coincide with the experimental values by fitling two energy-independent param-
eters of our model. It then turns out that also the higher central moments of the charged
particle distribution are linear functions of the average number of charged particles.
Hence we also find KNO-scaling [2].

In our model the isospin is conserved exactly. As a result we find not only strong
correlations between the number of neutral and charged particles, but also a distribution
of neutral pions, which is completely different from what one obtains by assuming Czy-
zewski-Rybicki [3}-like distribution for the total number of pions and then using the
Cerulus weight factors to project out the distributions of charged and neutral pions [4].

These distributions and also the distribution of the total number of pions can be
decomposed into components carrying isospin zero, one or two. It turns out that for
proton-proton scattering the component with I, = 2 can be neglected. From a calculation
of the distribution of neutral pions it is furthermore seen that these pions are preferably
produced in pairs.

A more detailed discussion of our results will, however, be postponed uutil Section 3
and 4. There we will also discuss how the production of ¢ and other mesons can be incorpo-
rated into our model. A few simple calculations are performed in order to show that by
these extensions the form of the n®-distribution and the charge-neutral correlation can
be improved considerably.

In the next section we first explain our ideas by using a simple model for particles
without isospin. The extension to the cases of 7¥p- and pp-interactions will be sketched,
but details of the calculations are omitted.

2. Description of the model

In order to explain our ideas we will first consider a simplified version of our model,
in which the mesons and nucleons have ro isospin. A Hamiltonian describing such a case
with static particles is

H = a*a+g(a+a*), M

where a annihilates a meson. The constant kinetic energy of the nucleon has been omitted,
while the meson mass is taken as the unit of energy. This Hamiltonian can be written in
diagonal form by the substitution ¢ = a+g. This gives H = ¢*¢—g2, which has the
eigen-values g, = k—g? (k = 0, 1,2, ..) and the eigen-states

c**
k) = Ja 10), (2)
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where the groundstate is given by
[0) = e ¥ 750, 3)

For this groundstate, also called coherent state, the distribution of the total number
of particles can be calculated and one obtains a Poisson-distribution, as is well known.
Since this coherent state is the state which is always chosen to describe independent or
uncorrelated particle emission, a generalization of this independent production present
itself immediately.

We will assume that the final state in a high energy collision is not described only
by the groundstate of the Hamiltonian (1), but rather by an incoherent superposition of
all excited states |k). Each state will occur with a certain probability, and assuming that
immediately after the collision the system of hadronic matter is in a thermal equilibrium
at temperature T, this probability is proportional to the Boltzmann factor e™*/T, Later
the temperature will be chosen as a special function of the energy or rather of the average

number of particles. For any operator A acting in the space spanned by the many particle
*n

states |n) = 7: |0), we can now calculate the average in the final state as follows
n!
AT) =271 Y e "™(klAlk), C))
k=0
where f# = 1/T and the partition function Z is

Z = e P = & . &)
1—e#

k=0

In particular we find for the average number of particles

— 2 1
n=g+ F1 6)
and for the square of the dispersion D:

D* = (n—n)* = n*+n—g*. Y]

Keeping the coupling constant g fixed and letting the temperature approach zero we find
the result of the independent emission model, i.e.

n—g* and D*-n. 8

For T going to infinity, however, we obtain

- 2 3 i

n=T+g"—54+0{— 9
and

1)=H+%+O(%). (10)
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It is seen that the width of the multiplicity distribution no longer increases like \:’lﬁ, as
for Poisson-distribution, but like n, as is observed experimentally and as is expressed
in the “Wroéblewski-relation’ D = an—b. The coefficient a, however, is less than one and b
is positive, so that the values of @ and b as given by Eq. (10) are certainly not correct.
This can be remedied by letting also g2 increase linearly with # or with T, which has the
same effect. Then, as can be seen from Eq. (7), the coefficient a can be made less than
one. Indeed, by taking the proper values for 4 and B in

g* = AT+B Iy

the numbers a and b can be recovered. In this way the Wroblewski-relation can be satisfied
for all energies by adjusting the two energy independent parameters 4 and B.

When we compare our formulae (6) and (7), for the case g = 0, with the corresponding
formulae for black body radiation,

Z 1 ,

_ 1
2
D? = n+ Em (13)
P

with E(p) = |p|, we observe that the only difference is the occurrence of only one mode
in our treatment and an infinity of momentum modes in the black body case. For the
black body case, however, one finds easily by converting the summations into integrations

and

that D = cx/ﬁ, where ¢ is a numerical constant. From this follows that our result D~ n
is a consequence of the assumption that in the final state only one mode, at least not
a continuum of modes, can be excited. In other words: it is essential to assume that the
final fireball is an incoherent superposition of excited states of one or of a few particles
and not of a field in a box.

Another feature of our model is that the multiplicity distribution satisfies KNO-scaling.
This can be proved in general by showing that all central moments [(n—n)*]'/* increase
linearly with n. For the simple case g = 0, however, it can be shown directly that the
distribution

PP =U—=eHe ™ (n=0,1,2,..) (14)
scales in the sense that
¥(z) = lim nP(p) (15)
depends only on the variable z = g We find
n

w(z) = e, (16)
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T - . . .
provided also — = 1 is kept constant. This is the same condition as required for the Wré-
n

blewski-relation to be satisfied.

We notice that in our model the distribution of observed particles is represented as
a sum over a number of components. For each of these components the particle distribution
is Poisson-like. Multi-component models of this type have been considered before [10].
If also KNO-scaling is satisfied, which is the case in our theory, these models can be used
to explain the observed leading proton spectrum [11].

So far we have only considered scalar mesons. It is possible, however, to incorporate
the isospin of the pions and nucleons and its conservation, but keeping the restriction
of static particles. This is done in a way which is completely analogous to the case of
scalar mesons. For pion-nucleon scattering we consider the Hamiltonian [5]

Hy=a* a+gla+a* -7, )

where 1, 7,, 75 are the Pauli spin operators acting on the isospin of the nucleon. For
pp-interactions we take the Hamiltonian

Hz = Z*'a+g(a+5*)‘(;(1)+¥(2)). (18)

The idea is now the same as in the scalar case: calculate the eigen-values and eigen-states
of the relevant Hamiltonian, assume a thermal equilibrium between these states, and
calculate any particle distribution. Again a relation of the form of Eq. (11)is assumed and
the constants A and B are determined such that the Wrdblewski-relation is satisfied.

In order to show the isospin structure we write down the form of the eigen-states.
For H, they are:

i p) = k) = oy Ai(k) 'py+ :/-“ [243(k) Inp> — A3(K) ip)] (19)

and
[17p) = wylk, 3> +walk, 3, (20)

with
[k, 5> = ag Ag(k) nd + B [/I AS(K) Iny—JZ AT '(K) ip)] (21

and

k3> = 0 [VE AT R P> +Z A3K) I+ B [VZ AX(K) Ind— /3 47 '(k) Ipd]. (22)
For H, we consider only
tpp> = k) = wilk, sH+w,n, a), (23)
with a part which is symmetric in the two nucleons

o 1
(k) ppy— 3 Aj(k)

. . 1ry l
ik, sy = o AQ(k) ipp)> + B [_— A
N

J2

pn+np\‘J
\"2 /

pn+2 p> +/3 A3(K) ,nn>:] (24)
/

A

i
+?£”[ = AUK) [pp> — v/ 35 A2(K)
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and an anti-symmetric part

s ~ pn - lA,p Y
k0> = o'l | P T @5)
In all cases k is the index which numbers the eigen-states. In Eq. (20) we take w, = — +/ Z

and w, = \/§, i.e. equal to the Clebsch-Gordon coefficients for the I = } and I = 3%
content of the initial two-particle n~p-state. In principle, however, they could have been
taken as free parameters, but with |w;|2+ |w,]? = 1. In the same way we take w, = 1
and w, = 0in Eq. (23). The coefficients o, f§; and y, and the operators A}*(k) — which
create an indefinite number of mesons with total isospin I and third component I — are
all determined by the eigen-value equation for the k-th eigen-state. The technique for
transforming this equation to matrix form is described in reference [5]. We obtain infinite
symmetric band matrices with a width three for the n* p cases and five for the pp-case.
After truncation to 8080 matrices they were diagonalized by standard numerical
techniques. For the reader who has the desire but not the energy to repeat all our calculations
we collected the most crucial formulae in the appendix.

3. Results

In this section we show some results of our calculations. The two parameters of the
model occurring in the linear relation between g2 and T are chosen so that for ntp-scattering
the dispersion of the distribution of charged particles, i.e. nt, 7~ and proton, is exactly
equal to

2(n*p) = 0.53n,—0.54, (26)

which is the Wréblewski-relation as given in Ref. [6]. For n—p the same parameters are
taken. For this case we then find again a straight line for the dispersion

9(n"p) = 0.7n, @n
which should be compared with [6]
D(n"p) = (0.54+0.02)n,—(0.404-0.07).
For the pp-case the parameters were fitted again to give the correct experimental result
9(pp) = (0.5840.01)n,—(0.56+0.01). (28).

With the theory fixed in this way we calculated the following quantities:
a) The average number of protons
For ntp: N, = 0.6 for all but the lowest multiplicities.
For np: N, = $1 = 0.378 for all but the lowest multiplicities.
For pp: N, = 1.73 for all but the lowest multiplicities.
The numbers of average protons differ from those assumed in Ref. [4].
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b) The average number of pions
For ntp we find that with increasing energy the ratios are given by

nyin.ing=2:2:1
We also obtain the exact result for all energies

n,+n_ = 4ny+1. 29)
In the g-model to be discussed in Section 4 this relation becomes

3ng—2n, =1,
so that asymptotically

neing = 3:2.

For n~p and pp the average number of neutral pions is larger than half the number of
charged pions. In Fig. 1 we show for the pp~case how ny, n_ and n, vary as a function of
the average number of charged particles.

Some experimental results are also indicated. Unpublished data at ISR energies seem
to be in rough agreement with our prediction.

¢) The multiplicity distribution of charged particles

These are shown in Fig. 2 for pp [7] and in Fig. 3 for n*p [9].

The dotted line in Fig. 2 corresponds to another version of our model which will
be discussed in Section 4. The KNO function

1[)(2) = lim ;I.ca(”c)/ainel(ﬁc)

ng—> ®©

nC . . .
with z = - fixed is calculated for ntp and shown in Fig. 4.
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Fig. 1. Average multiplicities for pp-scattering as a function of the average number of charged particles.
Also shown is the average n°-multiplicity as measured by Bardadin et al. [4]
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Fig. 2. Multiplicity distribution of charged particles for pp-scattering. The dotted line is our result for the
o-model. Data points from Ref. [7]
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For pp plotted in Fig. 5 for only one energy corresponding to n, = 15.2. Only for
low multiplicities it is still changing a little bit with increasing energy.

A way to describe the change in the multiplicity distribution with increasing energy
is to give the central moments

D, = [(n.—n )] (30)

as a function of n..

For a distribution which shows KNO scaling these moments should increase linearly
with n,.

In Fig. 6 we therefore give n./D, (k = 2, ... 8) for the pp-case.

[
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Fig. 6. Moments of distribution of charged particles for pp-scattering

A more sensitive measure of the form of the distribution is given by the moments

D3>3

Y = D,
D\*

V2 = D, .

For ntp and np we have plotted y, in Fig. 7 and y; in Fig. 8.
d) Correlations
The correlation function f,, = n.(n.—1)—n2 gives no information which could

not already be obtained from the dispersion. It is used, however, to measure the deviation
from uncorrelated production. It agrees well with the experimental data.

and
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Also shown is fyg, as calculated from the distribution of neutral pions.
We do not show the correlation between charged particles and neutral pions, that

is fioo = Rcho—Nchg.

It is negative for all cases, whereas experimentally it is positive, at least for high energies.
This negative charge-neutral correlation is known to be a general property of theories
in which cluster formation is not taken into account [8]. It is also seen in another way

n I " n

Il Il L 1 1 Il i

0 2 4 6 8 10 12 ¥ 16 18 20 22 24 26 28 30 32 34 36 38 Ne

Fig. 9. The average number of neutral pions as a function of the number of charged particles

by calculating the average number of neutral pions for a given number of charged particles.
Experimentally this is an increasing function of n,, whereas we find a decreasing function,
as is shown in Fig. 9 for the case of ntp. In the next section, however, we shall show how
this defect disappears in another version of our model.

4. Discussion

Since isospin conservation puts a very strong constraint on all multiplicity distributions
we considered it worthwhile to decompose them into the contributions from the different
isospins. For the pp-case this leads to the results shown in Figs 10, 11, and 12. From
these pictures it can be seen that the component for which the isospin of all mesons is
equal to.two can be neglected completely. The / = 0 and I = 1 components are of compara-
ble magnitude and are distinguished by an even and an odd number of neutral pions
respectively. It is also seen that the form of the distributions is very different for I = 0 and
I'= landit would be very interesting to have an experimental verification of this prediction.

Another remark we want to make is about the completely different shape of the
distribution for the total number of pions and of the distribution of neutral pions. In the
projection method as used by Bardadin et al. [4] one obtains charge- and neutral-distribu-
tions Of the same form as the total distribution one starts from. Our calculations show
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how misleading this can be. However, we do not want to hide the fact that our neutral-
-distribution of Fig. 11 does not have the shape as found experimentally [7]. In order to
improve this situation and also to bring the charge-neutral correlations closer to the
experimental value we have considered a model in which the calculations are exactly

4
{n.) pp Pin) pp #1071 Plngd nn
006 | Nee EVEN  ( oel n 40 ODD 002k n o EVEN
Tnes =042 Type =1 o= 2
005 0.05F 0.01k -
0.04F 004k 0 a : x\\ 1 o
10 20 30 n.
0.03} 0.03r Py
0.02+ 0.02 011k
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0 , , 0 , , [ osl- TOTAL CHARGE
0 10 20 30 n, 0 10 20 30 no DISTRIBUTION
0081
07}
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0.06+ pn h pn 0.06}
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.05k Ipe: ! 005F  ~ 1= 0.05}
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o} 10 20 30 n. 0 10 20 30 n, 0 10 20 30 ne

Fig. 10. Break-up of the distribution of charged particles into contributions from different values of the
total mesonic isospin

the same as in our present model, but in which the produced particles are p-mesons instead
of pions. The pion-distributions and correlations can then be obtained from those of the
o-mesons by taking the decays 0* — 7 7% and ° — n*n~. From this follows nge = ng.+n,-
and

Hpe+Npe = N == Hye +N1,- + 2040,

We therefore see that the n®~distribution in this g-model is the same as the charge-
-distribution in the original model, which has a form which is completely different from
the distribution shown in Fig. 11. The new charge-distribution must be calculated from
the combined distribution of neutral and charged pions in the original model. This has
been done and the result is shown as the dashed line in Fig. 2. It is clear that also in this
charge-distribution there is an improvement. The correlation f,o between charged and
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neutral pions was again determined and found to be positive and increasing with increasing
energy.

These calculations for the g-model could be done easily because the difficult part
was the same as for the original n-model. If, however, we want to include both ¢ and =

107!
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002} AN 002} 0.02} /
0 H ~ e | bl 0 'y L] 1 0 1 i 1
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Fig. 11. Break-up of the distribution of neutral pions into contributions from different values of the total
mesonic isospin

production and, perhaps, also a scalar g-meson, we should repeat our calculations, but
now for a Hamiltonian which has the form

H = maa* a+ga+a*)- ‘?+m,,5* b+ g0(5+5*) “T+moe*c+ g (c+c*),

where a*, b* and c* create pions, g-mesons and g-mesons respectively. The calculation will
be rather tedious, but hopefully worthwhile, because it will enable us to interpret the data
in terms of production of some resonances.

We thank Dr. I. Derado, Dr. Preissner and Dr. J. Bartke for inspiring discussions.
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Fig. 12. Break-up of the total pions distribution into contributions from different values of the total
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APPENDIX

In this appendix we would like to collect a number of formulae which are important
in reducing the eigen-value problem to matrix form. We will not give the proofs but for some
of them the proofs can be found in the appendix of Ref. [5].

We first define the tensor operator T, with ¢ = 0, *+1, ..., +k by

at
~JR!
and its commutator with the components of the isospin:

[13’ Tlg] = qulga

T (A1)
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[L,, T7] = V(k=—q) (k+q+1) T,
[, T = Vk+q) (k—q+ 1) Ta".

The scalar operator which creates pairs of mesons is
3
k sk
G* = '21 aja;
i=

For the above-mentioned reduction we now need the following formulae

. , kn!(2n+2k+1)!
OIG" T TIGH"0) = :
OGTETEGT0) = o D+ )

apTEG*|0) = —2nT¥, G*71i0),

2n+2k+1
TEIGH0) = — ——-- T2 G*0y —4 \/ Tr LG Y0,
doly 10> 2kl k-1 Uy —4an by 1k+ 10>
agTF26*0) = — —24\/7" Cn+2k+1)TEZG*0)
o7k 2k+1V2k—1 ot

\/3\/ nTkHzG*" Yoy,

3 2k
TE3GH0) = — ¥ /-—— 2n+2k+ DTG0
do iy 10> SRV ETe Cn+2k+ DTy >
4\/2k—2 TG 10)
— n )
Sk et 4

JE

a, TEG*"0) = Tl Q2n+2k+ )TE [ G*0> — TE 1610,

2n
J2k+1

k—1 2n /3
20+ 2k+ DTG0y — 2ny3 T {G*" 10y,
2k+1 J2k+i

_ (k—1D)Qk-3)2n+2k+1 _,
Tk 2G*n 0 = Tk_ 3G*n 0
a4 1y [0> Qk—1) 21 k—1 10>

a. T 1G*|0) =

2n ./6
2038 pacsgaii,
 V2k+1

(k—=2)(2k—3) 2n+2k+1
(k1) 2k+1
2n /10

V2k+1

a, TE3G*0y = TEZ{G*"|0)

TG0,

(A2)

(A3)

(A4)
(A35)

(A06)

(A7)

(A8)

(A9)

(A10)

(A1)

(A12



a TG0 = 2n Vk+1 T2 G+ 1.0, (AL3)
a_TE'G* "0y = 2n Jk T, (G*" 10, (Al4)

a_T¢ G0y = — - T2/ G*"0)
Qk+1)V2k—1
KQK=1) oy,
+2n T TG 10>, (A1S)
3(2n+2k+1
o THiGH gy = _ N3tk D)
(2A+l)\/2k~l
k—1)(2k—1
2 (_*.5%1~_3 TEC 26+ 10y, (Al6)
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