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The note presents some exact, static spherically-symmetric sclutions of the Einstein-
-Maxwell equations. The Kuchowicz solutions are shown to be particular members of these.

1. Introduction

In a recent series of papers, Kuchowicz (1968a, 1968b, 1970) has discussed the exact
solutions of the gravitational field equations for uncharged spherically-symmetric matter
distributions. He also collected an impressive number of model solutions which may be
of importance in astrophysical research. In this note we obtain, for the special case in
which exp (— 1) is a constant, some exact solutions for the charged spherically-symmetric
matter distributions and demonstrate that they reduce to the Kuchowicz case in the
absence of charges.

2. Solutions of the field equations

The Einstein-Maxwell equations for the charged fluid are (Adler et al. 1965)

G, = —8T,,, 2.1
[(—g)'2F*], = 4n(—g)'/2J", (2.2)
Fpap = 0. (2.3)

where G, is the Einstein tensor, T, is the energy-momentum tensor, F** is the electro-
magnetic field tensor and J* is the current four-vector (we set ¢ and the gravitational
constant equal to unity). For a static spherically-symmetric system an appropriate metric is

ds? = &% — PO dr? — 1 2(d0? +sin? 0dg?). 2.4
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It then follows that the ficld equations may be written in the form (Nduka 1975, Adler
et al. 1965)
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where a prime denotes differentiation with respect to r, and E0° = E,! = —E,?
= — S—goog“(FO‘)z. Because of the spherical symmetry, only the radial electric field
T
F'® = —F°! is non-vanishing. This choice satisfies Eq. (2.3), while Eq. (2.2) yields

FO' = e720(r)/r*, o= (h+v)/2, (2.8)

where Q(r) is the charge up to the radius r.

Q(r) = 4n [ JOr?edr. 2.9
0
On putting y = ¢*/? and eliminating p from Eq. (2.7), using Eq. (2.6) we obtain the
second-order differential equation for y(r):

o (LN (€ 20t N 510
y - ”—+"7’ Yy —5—3_”*;3——’;‘5 y =V (2.10)
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Eq. (2.10) is a generalization of Wyman'’s equation (Wyman 1949).

To obatin solutions of physical significance, the following boundary conditions have
been imposed:

1) The functions e~
fluid sphere.

2) the function v'e” is continuous across r = r,. The line element for r > ry is given
by the Reissner-Nordstrom metric:

P

and " are continuous across the boundary (r = ry) of the

ds* = (1-2M/r+ Q3/rH)dt* —(1 =2Mjr+ Q2/r*) ™ tdr® — r¥(d6* +sin® 0dg?),  (2.11)

where Qo = Q(ry) and M is the total mass of the sphere.

3. The model solution

For our model solution wc take the charge distribution Q(r) to be of the form Q(r) =
= (ex//2) exp (-~ 24/2). Here x = 1/r, and ¢ is a constant. This choice for Q(r) is physically
reasonable because it gives FO' = (ex/r?/2) exp [—(A+v/2)]. The boundary condition
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that the geometry be cuclidean at infinity implies that both v and 2 go to zero as r - 0,
so that the expression for F°! has the usual classical form, at least for large r. Thus the
constant ¢ can be identified as the proportionality constant giving the charge at the point r.
In this paper we take e * = A, a constant. The continuity of e™* at r = r, yields

A=(1-0/(1-0/2), 6 =2Mlry, 6 = &*r,> 3.1)
The differential Eq. (2.10) now bescomes

r3y vary +dyy = 0, 3.2)
where ¢, = —1, = {I/4—(1+0)]. Eq. (3.2) may be recognized as Euler’s equation.
On putting y = u(z) z = log r, this equation is transformed into one with constant
coefficients

u'(Z)+{a, — Du'()+a,u(z) = 0, (3.3)
with characteristic roots
oy =147y, o, =1—7. 3.9
where
\/1—_25:_0(%—5)
T 16

The solutions to Eq. (3.2) may now be written down — and hencc obtain the metric
coefficient €', the density o(r) and the pressure p(r). There are three possible cases:
(@) o, # oy, but both real: § < (1+20)/(c+2),

e =[Cr+C,r)P (3.5)
where C; and C, are obtaincd from the boundary conditions:
c. _ 1 {\/ﬁ . (35—2)—0(1—-3/2}
i l—g2 | 2 41-25+0(3-0)

=3 N —o(l—
C, = - L {”1 o '(35;~E)0ﬁ,__é'/2)}, (3.6)
roNi—op2 | 2 4+1-25+0(3-0)
1
8nop = ( 0'/2) L {(6—6/2)—0(1-5) (1—x%2)}, 3.7
(X3-XxD
8np = S
41—06/2)1=28+0(E—=03) r?
w (1—x*) ~
vi=3  (36-2)-0(1-5/2) N [\/f——é L (30-2—a(1-4]2) ]x*’-v
2 4v(1-28)+0(3-6) 2 4J(1=28)+e(3=9).
(1-9d)o 1.8
e (38)



where
X, =2J1=8)[1-26+0(-5)],
X, = (36—2)—o(1—8/2).
(b) a; = a,
The solutions are
¢ = [Cir+Chyrlog r]?, (3.9
with
Ci = ———— {2+(1—0/2) log ry},
" 2r0 V(04 2) °
1—0/2
¢ = - =D
2 V(6 +2)
1+ %xz
8mp = —————s , (3.10)
21 +a)2)r
1 —(1—-0a/2)1
8rp = Jjozzoloex o Ll (3.11)
(6+2)r* {2—(1—0/2) log x 2

(c) a; # a,, but both complex. In this case (I+30)/(c+2)< <1, and y =

= \/[(25—1)—0(%—5)]/(1»—5). It is convenient here to give the formulas in terms of
dimensionless quantities. The solutions are

¢' = x*[C} cos (y log x)+ C5 sin (y log x)]%, (3.12)
where
- ——— )
(= NA-D-a2), O = e G
- 1 (1 .2
10 = =y (0= 02 =0(1=9) (1-2712)] (3.13)
and

8p 1 {2(1 —3) [cos (y log x) (CY +yC5) +sin (y log x) (C7 —yCY)]

T (1—g/2)x* [CY cos (y log x) + C5 sin (y log x)]
+(0/2—8)+0(1—-8)—0a/2(1 —5)x2} . (3.14)

In Eq. (3.14) we note that for certain choices of ¢ and J the pressure becomes negative.
This is unphysical. We therefore restrict Eq. (3.14) to apply to those values of ¢ and
for which the pressure is positive. In equetions (3.7) to (3.14) the point r =0 is to
be excluded (r # 0), because our solution is not regular at the origin.
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If in Egs. (3.5 (3.14) we set ¢ = 0, the results coincide with those already repor-
ted by Kuchowicz (1968a). Thus our equations may be considered as the generaliza-
tions of those obtained by Kuchowicz.
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