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JUNCTION CONDITIONS FOR THE EINSTEIN-CARTAN
THEORY
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Junction conditions for the Einstein-Cartan theory are calculated from the geometry
on the two sides of the hypersurface of discontinuity. Formulae in Gaussian normal co-
ordinates are obtained for the Einstein tensor. Exemples of the junction conditions are
given for static spherically symmetric stars, including a constant mass and spin density
Schwarzschild-like interior solution.

1. Introduction

Considerable interest has developed recently in the Einstein-Cartan theory of gravi-
tation [1] in which spin and mass play equally fundamental roles in determining the ge-
ometry of space-time. An important practical part of this field theory is the set of condi-
tions required in order to join solutions across a surface of matter and spin discontinuity
such as the surface of a star bounding matter on one side and vacuum on the other.

Junction conditions for the Einstein-Cartan theory have been derived by Arkuszewski,
Kopczyriski and Ponomariev [4] by examining the Einstein tensor for derivatives normal
to the hypersurface (in order to eliminate any J-function behaviour) and by [5] using
distribution theory to integrate the energy-momentum and spin conservation laws across
the singular hypersurface. The junction conditions are derived below without the use of
distribution theory by using the Ricci commutation relations [6, 7] to obtain formulae
in terms of Gaussian normal coordinates for the curvature tensors on each side of the
hypersurface of discontinnity. Evaluation of the corresponding Einstein tensor displays
explicitly those dynamical variables that cannot experience a discontinuity at a hyper-
surface where the energy-momentum and spin tensors are finite, although possibly discon-
tinuous, and yields directly the jumps in those components of the Einstein tensor needed
to match solutions across the hypersurface.
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The relevant equations of the Einstein-Cartan theory are presented in Sec. 2. The
continuity properties of the space-time manifold and some differential geometry are dis-
cussed in Sec. 3, with particular attention being paid to the properties of the hypersurface
of discontinuity. The junction conditions are derived in Sec. 4 and this derivation is com-
pared with that of Arkuszewski, Kopczynski and Ponomariev [4]. Finally, some applica-
tions of the junction conditions are presented in Sec. 5.

2. The Einstein-Cartan theory

The geometry of the Einstein-Cartan theory is characterized by a metric g;; [8] and
a metric connection I'';, that is symmetric in a coordinate basis only in' the absence of
spin and otherwise involves the torsion

Qijk = Fikj—rijk' (2.1)
This connection I w differs from a metric torsion-free connection I ijk, the Christoffel
symbol {Jlk} in a coordinate basis, by a tensor xijk called either (the negative of) the
contortion [2] or the defect of the connection [4]:
lﬂ.jk = fijk+Kijk- (22)
The defect of the connection is related to the torsion by
Kijk = —%(Qijk“*‘iji'*'iji)- (2.3)

The curvature tensor R;;, in the presence of torsion is not symmetric under inter-
change of the first and last pairs of indices, but it remains skew in the first two indices,
because the connection is metric, and in the last two. Thus the Einstein tensor

Gij = Rikjk—'% 6_';'anmn = Rij_’lz‘ 5;R (24)

is asymmetric.
The field equations are those given first by Kibble [9]:

i 8nG
Gy=—a1; (2.5)
c
and
8nG
Q=810 = 850" = . A (2.6)

where t' ; and Sk, ; are the canonical energy-momentum and spin tensors respectively. The
relation between the torsion and the spin is algebraic and the torsion vanishes in the ab-
sence of spin, reducing the equations of the theory in spin-free regions to those of general
relativity. The solution of (2.6) for the spin is

8nG
0% = —5 (85%—38iSY; -1 8iS"y). @7
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The geometric sides of the field equations satisfy a sct differential identities [3], the
generalized Bianchi identities

ViGij = ijlG’k - GijQ!r’i_"z Rklijmkt+Rklijnuls (2.8}
Vo™ + 2V Q" = — Qjijmkz + Gy~ Gy (2.9

These identities together with the field equations, but without any assumption rclating the
energy-momentum tensor to a Lagrangian, vield equations

c

Vitij = Qllilij+ijlllk— ) R“jmsmkl (2.10)

and
m i ~m 1 ,
VST = Q7S+ ?(flk"’m) (2.11)

that express the conservation of energy-momentum and spin or, alternatively, that describe
their time development. Thus, these equations are called conservation laws or equations
of motion.

3. Differential geometry

The problem of junction conditions is to match two 4-manifolds-with-boundary V!
and V2 across a common 3-boundary 2 to form a 4-manifold V as a model of space-time
compatible with the physical theory [10]. The field equations involve no higher than second
derivatives of tensors but the generalized Bianchi identities, which yield the equations of
motion or the conservation laws, involve also third derivatives of tensors, and thus fourth
derivatives of the coordinate transformation functions in their transformation laws.
Therefore, in order to avoid the appearance outside X of any discontinuous behaviour
whatsoever, we assume that each of V! and V2 is a differentiable manifold of class C* [11].
A discontinuity at ¥ of the second derivatives of the coordinate transformation functions
would complicate the interpretation of the physical significance of the equations of motion
as well as allow the introduction of spurious coordinate singularities into the connection
coefficients that, together with their first derivatives, appear in the Einstein tensor. There-
fore, we assume that V is a differentiable manifold of class C2. These conditions ensure
that the third and fourth derivatives of the coordinate transformation functions have
definite limits as X is approached from either side.

The model of the space-time V thus described is called a differentiable manifold of
class C? and piecewise of class C* or a piecewise differentiable manifold of class (C?, C%)
[12). Coordinate systems belonging to an atlas of class (C?, C*) are called admissible [11}.

Third derivatives of the metric tensor appear in the generalized Bianchi identities so
each of the metric tensors in V! and V2 is assumed to be of class C3. However, first deriva-
tives of the metric tensor appear in the field equations in linear combination with compo-
nents of the spin tensor; thus, if the energy-momentum tensor remains finite, a discontinuity
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in the spin tensor must be matched by corresponding discontinuities in some first deriva-
tives of the metric tensor. Therefore, the metric tensor is assumed to be of class C° in V.
The metric tensor is piecewise of class (C°, C3).

Finally, to avoid discontinuous behaviour along the hypersurface X, we assume that
Z is a differentiable 3-manifold of class C* with metrics induced by V! and V2 of class C3
and signature (-—+) and that on Z each coordinate in an admissible coordinate system
(x") of V' and V2 is a function of class C* of admissible coordinates &* of X:

xy = x(&). (3.1)

For the remainder of this section, unless the contrary is stated explicitly, we consider
only one “side”, either V! or V2 and labelled V4, of V.

The transformation coefficients e,” = 0x7/0¢* define a natural basis in Z of three linearly
independent vectors tangent to X in V. The metric tensor induced by V# is

gup = gijeazieﬂj (3.2)

and this metric and its inversc may be used respectively to lower and raise Greek indices.
A unit space-like normal N, to £ in V# can be defined up to a sign as the solution
of the equations

N, =0 and gY;NN;= —1. (3.3)

Choosing normals out of V! and into V? respectively ensures that the components of the
two normals in V! and V? are identical.

For some calculations, it is convenient to use a normal Gaussian coordinate system
[13]1 X" = (&% x) around X in V consisting of a) the coordinate x defined to be the directed
distance along geodesics in V starting at each point (%) of Z with the normal N,(&%) as
initial direction in V# and b) the intrinsic coordinates (£%) of the starting point in Z. Since
the geodesic equations

d*x’ o dx? dxt

__._+I—l_-—-——-—~——:0 3.4
dx? *dx dx (-4)

have solutions

xt = X(E)+aN(E) =3 X[THN N () + .oy (3.5)
the vector
; ox' _— éxt
n = 5};(—}.—11 = (3.6)

is continuous across X with n'l; = N'. Furthermore, direct calculation shows that
02x'/0x &%y = D*X'[0E%0x|y so
de,’ oN'

ox |z o0&

(3.7
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The metric of V* is related to the intrinsic metric of X by
gij e g""ea"eﬂj—-ninj. (3.8)
Components, with respect to the normal Gaussian coordinate basis, along tangential

directions may be labelled by Greek letters and those along the normal direction by N
so, for instance,

Time) =TV, =Ty, and T, =T,-T",. (3.9)

An induced intrinsic connection may be defined on X, for vectors Al = A’eaf tangent
to X, by projection; if §4/5U is an absolute derivative,

Vod, = of X ya i 2 e O (3.10)
a‘tp B aéa Jeri B 650{ agva yi 5(;:0: .
SO )
L (.11
TBx b o*éa '

The intrinsic connection is metric with respect to g4, although it is not torsion-free.
The manner in which X is attached to V* is measured by evaluation on X of the ex-
trinsic curvature K, defined by [14]

6" = K¢/, (3.12)
o¢
the general form of which follows from nn' = —1. Thus,
K, = ¢ om0 (3.13)
5€a 551

The extrinsic curvature is not symmetric as it is in the pseudo-Riemannian case:

Kyp—Kp = QY. (3.14)
The expansion of de,/6&? corresponding to (3.12) follows from (3.11) and (3.12);
de, v i i
73{7 = I pe + Ky n' (3.15)
The relations (3.7), with 8/6x = n'V,, yield
59; B i B i N i
"5‘; = Ka eg +Q Naeﬂ +Q aNH (316)
z
and
on’ Na i
O - oM el 317
ox g

These equations combined with (3.2) give

6gaﬁ
ox

= 2K 25+ 2Q 5 N }a- (3.18)
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4. Junction conditions

The complete set of components of the curvature tensor can be obtained from the
integrability conditions for the differential equations (3.12), (3.15), (3.16) and (3.17) for »’

and e,’, namely

o 0 é o R ox* ox! a1

— = — — e = R, e — —, .
ou v v ou) " e ou (4.

for (u, v) equal to (&%, &) and (¢#, x) in turn. The corresponding commutators acting on n’
duplicate the R,y;; components, since R;;, is skew in the first two indices. Evaluation of
the left side of (4.1) through the use of equations (3.12), (3.15), (3.16) and (3.17) yields the
components

RN«B)' = V?Kﬁa“VﬂKya‘*‘K‘saQéyﬁ’ {4.2a)
Riupy = 3R61ﬂy_KﬂaKyé+KyaKﬂ6’ (4.2b)
JK," PR s N
Riyen = — K- Ky — K/ Qs +V, 0"y (4.2¢)
X
L 0K, , )
= —¢gh —g’? +K”’Ka,,+Q"Nme,,+VaQNSN, (4.2d)
and
R¢ _Q_E@_VKe_V . +K QNe __KQQ:\-‘ 4.2
aNg — Ox pa BQ Na o N B aN» ( . C)

where 3R, is the intrinsic curvature tensor formed from I,

The corresponding components of the Einstein tensor follow by direct calculation.
The derivative of the connection (cf. (4.2¢)) can be eliminated by calculating G,y from Gy,
through use of the formula

Rijik - Rikij = ViQikj - VjQiu + Vinji + Qiqukj- 4.3)

The Einstein tensor has components

Gy = 1 CR+K*— KK, (4.4a)
G", = V4K ,}—V,K+ K, 0", (4.4b)
Gun = VK=V, K=V;0% y+ Q" K+ O—%i—” — 0" Kp— a_g:ﬁ, ; (4.4c)
and
G* = *R%+ Ky 0™ + K"K+ 0—2—:’— —V,0%y
—1% (3R +K*+2 Lf + K, K +2K,,0™ ZVYQ”"'N) . (4.4d)

These reduce for zero torsion to the corresponding equations [6] in general relativity.
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These formulae are not expressed in a form suitable for obtaining the junction condi-
tions by inspection since the intrinsic connection involves discontinuous functions:

Lopy = f“ﬂ')'—}_k.\'lﬂ”/ (4.5a2)
= f‘aﬂ}"—lf (Qdﬂ}'+Qﬂ}'1+Q7[fa()9 (45b)
where I, is the Christoffel symbol obtained from the intrinsic metric. Let V, denote

the covariant derivative corresponding to I’ «py and ~ over any symbol denote the cor-
responding entity evaluated with that covariant derivative. Then, for example, we have

K} = R/ +x%,, (4.6a)
<=0, (4.6b)

and
BRaﬂ = 3ﬁaﬂ + V~7/1anzy + 6)}Kyaz/.i + Kva/lKaéy - Qyévkaaﬂ' (47)

With this notation and omitting expansion in every term of the cxterior curvature by (4.6)
we obtain formulae useful for the discussion of junction conditions and possibly of
use in considerations on thin shells of spinning matter:

Gy = 3 CR+2V,0%, + k"7 05, — 07,07 .+ K* - K, K", (4.8a)
= VK —0Qf K~k — 9?;, (4.8b)

Gy = VK~ 0% jK) — QF iy — K7y K. — Ky 1PV
Z? NonK =V, 0% oy + gx“” — Q" Ky — Q" yKunp (4.8¢)

and

Gaﬂ = 3R2ﬁ + VBQ”}' + v)"‘ﬂﬁ + Kyaﬁxaé}' - Q?M"Mﬁ
jnl &4 d

+K;, 0% + K,

Nu h QN/

. - . oK ) )
-16% (3R +2V,07 + 1%k 5, — 075,07 + K> +2 o + K?6K57+2K75Q”N"—2VYQ“”N> .

(4.8d)

The condition that the energy-momentum and spin tensors be of class C? in V! and
in V2 and experience at most a discontinuity in V at X implies, from the field equations
and the normal derivatives in (4.8¢c) and (4.8d), that Q”,; and K.’ are of class C°in V.
These conditions can be written in terms of the notation

[f]= lim f(x, &)~ lim f(x, &) 4.9)

x—0+ x=0-
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as
[Qfs] =0 (4.10)
and

[Kep] = 0. (4.11)

The symmetric part of (4.11) gives, by virtue of (3.18),

[%’] = [2Q 51w ] (4.12a)
while the skew part, combined with (4.10) and the fact that kwl = 0, gives

[s",]=0. (4.13)

The jumps in GYy and G",, needed to match inside and outside solutions, are given by

[G"] = ~[K""kpa] = =4 [Q"(Qpyt2Q )] (4.14a)

and
[GNN = —% [KYﬂaKa/iv] = % [vaa(Qaﬂy+2Q(ﬂy)a)]‘ (4153)

These junction conditions can be written in terms of general admissible coordinates x’
in V by intr(_)ducing the projection operator A'; = 6';+n'n; and defining projected compo-
nent labels j by

Th, = T4 (4.16)

Equation (4.13) is already in that form and the other junction conditions are

[Ki;—QGininl =, 0 (4.12b)
(WG] = —[np il = = [n,0% Qe +2Q330)], (4.14b)

and
[n'niG,;] = 4 [ % 5:] = [0 Qei+20500]. (4.15b)

Some of the conditions matching the components Gy and G", across X can be ob-
tained also from the conservation laws (2.10) and (2.11), which may be written as

- ij o4l j ¢ j m
(-9 1/2{(_g)1/2t1},i = -+ QM — 5 R, S",, (4.17)
and

- m i m i m ]
(-2 1/2{(—g)1/25 wtfom = DS+ TS 5+ _c_(tlk_tkl)‘ (4.18)
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Integration of these expressions with the invariant volums element d*v = (— g)"/2dx'dx2dx3dx*
over a “pill-box” around X gives, since all terms on the right sides except the curvature
term are finite everywhere, (4.13) and

. ¢
[nt';] = 5 ka'j,nS'"k,dA'L‘. 4.19)

The integrand can involve a product of a Heaviside step function 6(x) from the spin tensor
and a Dirac é-function from the derivatives of the connection in the curvature tensor.
However, the t", components involve, as coefficients of the §-function terms in the curva-
ture tensor, only continuous components S"; ; of the spin tensor so the integration can
be carried out to give, with an application of (4.11), results in agreement with (4.14). On
the other hand, we obtain for the other component

~

[ = _;_ J RMNmS | dt = % J[K“ﬁ7']5(x)5},ap0(x)d4v (4.20)

which appears to be indeterminate.

However, Arkuszewski, Kopczyniski and Ponomariev [4] noted [5] that the é-function
arises from the terms in the curvature involving derivatives of the connection linearly and
that the connection is linear in the spin. Thus, one can see the origin of the d(x)0(x) factor
in the derivative of [0(x)]? so one can write here d(x)0(x) = 1 d[0(x)]*/dx and immediately
integrate (4.20) to obtain a result in agreement with (4.15).

5. Examples

The spinning matter source of the Einstein-Cartan geometry corresponding to a perfect
fluid in general relativity is a Weyssenhoff fluid [15, 16] described by the fluid velocity «’,
the rest energy density e = u'u’t, ; and the vector spin density S' defined in terms of the
spin tensor S, = 'S, by

S'=3n"MyS,, and u'S;=0. (5.1
The energy-momentum tensor for a Weyssenhoff fluid is [3]
1 = u'l(e+phu;+cuu'V,S,] ~pé';. (5.2)
The junction conditions from spinning matter to vacuum reduce in this case to [4]
[v"S;1=0, so u"z=0, 5.3
[%';‘7’3] = - 1_6;’;9 USpnls (5.4)

and

2nG
ply = —cz— SNZIE‘ (5.5)
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For a static spherically symmetric star, n oc d/ér and the only non-vanishing component
of the spin is Sy. Thus, the normal derivative of g,; (5.4) is zero as it is general relativity.
Furthermore, the Einstein-Cartan equations for a Weyssenhoff fluid reduce to those of
general relativity with the energy density e’ and pressure p’ in the latter theory given by [17]

2nG

¢ = e— - Sy’ (5.6)
and
, 2rG _ ,
p =p— e Sy*. (5.7

Comparison of (5.5) and (5.7) shows that the Einstein-Cartan boundary condition p’[; = 0
is identical to that of general relativity. Thus, known static spherically symmetric solu-
tions of general relativity carry over directly to the Einstein-Cartan theory with the substi-
tutions (5.6) and (5.7).

It is worth noting [5] that Equation (5.6) shows that the externally determined masses
m in Tolman’s solutions depend not only on the energy density e but also on the spin
density Sy.

The dependence of the spin on the radial distance r is not determined, however, in the
absence of a magnetic field. This dependence can therefore be chosen arbitrarily, subject
only to the physical restriction of the maximum spin per relevant elementary particle,
(Prasanna [17] introduced an arbitrary assumption, his equation (4.9), to determine the
radial dependence of the spin.) Thus, for example, one may obtain, for various choices
of Sy(r), an arbitrary number of solutions corresponding to each of the solutions of
Tolman [18].

A solution with constant mass and spin densities corresponding to the Schwarzschild
interior solution for r < ¢ is given by

2 -1
ds* = — (1-— %) dr? —r}(d0? +sin® 0d¢?)
+ 3 (1 =a?[RHVE -1 (1 —r?R*)*}Par?, (5.8)

with 2G m/c*u = a?/R, m being the externally determined mass, and the only non-vanishing
torsion components relative to an orthonoimal frame being the constants

8nG _,
"‘Q423 = c_3 S = Q432~ (5-9)
The pressure is given by
* 216 2, 3c*
PU) =27 2N 167GR?

y [(1—VZ/RZ)I/Z—"(l——aZ/RZ)l/z]
(3 (=a?/R) 2 =3 (1= 2[R 2]

2Gn
=z v+ Dect(r). (5.10)
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This solution arises also from Tolman’s assumed relation g,, = (1 —r%/R?)"! for satura-
tion of spin: Sy = co, for ¢ a constant dependent on the type of matter present, implies
from equation (4.3) of Tolman [18] with the substitution (5.6) that ¢ satisfies a quadratic
equation with constant ccefficients.

The speed of sound is infinite in this constant density model [19] but solutions with
the same metric corresponding to a finite speed of sound can be obtained by selecting
a radial-dependent spin. For example, choosing (2nG/¢?)Sy? = p.(0) — p.s(r) gives a zero
speed of sound; the pressure is constant throughout and the density increases with in-

creasing r.
Similar considerations apply to the remaining Tolman solutions as well as to more
realistic models, like that of Kuchowicz [20].

We should like to thank Dr W. Kopczynski for informative correspondence.
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