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In this paper we introduce the notion of the superenergy supertensors and the notion
of superenergy tensors. Fvery physical field which possesses the energy-momentum tensor
{canonical or dynamical) will also have a corresponding superenergy supertensor (canonical
or dynamical respectively) and a corresponding superenergy tensor (canonical or dynamical
respectively). A superenergy supertensor and a superenergy tensor can also be assigned to
physical fields which do not possess any energy-momentum tensor, €. g., to the gravita-
tional field {;y} and to the curvature tensor field R‘;v'l"". In this paper we construct, among

others, the superencrgy supertensor for the tensor field R"“;A'."(I’) of the Einstein-Cartan

Theory. In the special case of the General Theory of Relativity this tensor is proportional to
the Bel-Robinson tensor.

1. The superenergy supertensors and the superenergy tensors of a physical field ® which
possesses the energy-momentum tensor or pseudotensor

In the following ECT means the Einstein-Cartan Theory, GRT — the General
Theory of Relativity and SRT — the Special Theory of Relativity. We restrict ourselves
temporarily to the space-time of the GRT, i.e., to the differentiable manifold
Ve [1].

Let us suppose that in this space-time a physical field @ is given. Its invariant Lagrangian
density is A and the corresponding to it dynamical (= metric) or canonical energy-momen-
tum tensor is ‘”T",‘,’ . Following Pirani’s paper [2] we will define the dynamical or, respectively,
canonical superenergy tensor %’T‘;?(P) of the field ¢ and at the point P € ¥, in the following
manner. Let us introduce, at the point P, the normal coordinate system NCS(P) for the

connection {gy} . Inthe “hyperplane” y° = 0 of this coordinate system we consider “sphere”

A () +(%)2+ (0% < #% with #,, being sufficiently small. The point P is the center
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of this sphere. Then we define'

[{JCTI=T0d g CT,* -1, "d’s
ST,%(P) := lim = lim 1
TP R0 s Ry =0 =R g ™

We see that the superenergy tensor §7;,"(P) of the field & is constructed by means of some

kind of averaging of the differences of energy-momentum. In other words, it is a tensor
constructed from a sort of relative energy and relative momentum.

Let the field °T,;‘f be of the class? C", r = 3 in the neighbourhood U: K C U of the

point P. Then
§§§ CTr=*T0d
lim X —— = lim i
Ry =0 TRy Ry—0 FRy

a;f,r{ T, =T, Hd’s

3
=1 3 "Ll = 10 - )00 = STUP, o),

TP, v0) 1= 3 (P — g °T) . )
where

cx X ‘3 °af

X * ap
NCs(p) “0? NCS(P) n-

The sign “o” above the tensor field denotes the value of this field at the point P and a
comma “,” denotes partial differentiaition. The °’T,;“_,,ﬁ is a true tensor {1, 3]:

* 3k
S5 v [ Y- A BN Y-
T s = VoV L'+3 Rigup 27

+ RGN Ti =% Riaias(ED+ Rapan T2

* . o . . . . o
V denotes the covariant derivative with respect to the Riemannian connection { ﬂy}' We

will call this four-index tensor the dynamical or respectively, canonical supertensor of the
superenergy of the field ® and denote it by £7,”,;. This tensor is more fundamental than
the two-index tensor $7T,"(P, v9).

The superenergy tensor §7,"(P, v°) is a local construction which explicitly depends on
the form of the energy-momentum tensor °T;ﬁ and on the four-velocity v* of the observer
O which is at rest in the origin of the NCS(P). For the given energy-momentum tensor

T .. the supertensor "S’T,',v, .s May be uniquely determined. The same can be done for the
tensor £T,"(P, v9) provided a vector field v° is given.

! We may also use the cube C: —a < ¥ < a (b = 1,2, 3) in NCS(P) instead of the sphere A
and define

55 CT =T d%y [ AT PAGYEN
ST Y(P) 1= lim —< = lim %
S “-( ) a0 %as a_r.r:) 4-3—0a‘

The results will be the same.
2 In the following we will assume that the all considered fields are of the class C",r > 3.
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Further we define the density, &, of the superenergy of the field ¢ and Poynting’s
supervector P, of this field for an observer O
g5 1= ST, 0" s; o = (4= 1"0,) 8T 0" s NSC(P) — P, =0, Pg=%T

T, (P, v9): = 300" — g)°T,, .p is here the tensor obtained from °T,, = g,,°7T,* by means
of the same procedure as above. We would like to emphasize that the tensor % T,.,(P, %)
is an object different from g,,%7,%(P, v°). The same is true for the tensor §T*(P, v%):
= 3 (00" - g*)®T™ ,, obtained from ®T*. §T™(P,v%) and YT™(P,v°) have the same
symmetry propertles as °T,',(,(P) and ®T*'(P) respectively and, additionally, if the trace
®T*(P) = 0 then ST,A(P,vY) = 0 also. The components of the superenergy tensors
$T.%(P, v9), LT,,(P, v©) and ST*(P, v°) have the dimension equal to the cm2 x dimension
of the components of the energy-momentum tensor The same dimension have also
the components of the superenergy supertensors oT Y ap> STW,, and "S’T",”a;,;.

The construction of the superenergy tensors of the field @ is also possible in the
framework of the SRT. We must do it in the same way as described above and in the
Carthesian coordinate system. In this case {T*(P,v%) = g™ ST, (P, 1%, ST(P, %)

= gy, $T,%(P, v") and the tensor °T (P, v°) possesses the same algebralc propertles as the
tensor °Tu".(P) Moreover, in a very crude approximation and for the infinitesimal, fixed
sphere & in SRT we have

0
5 f f f T, 0d%y = f# T Xngds
X o

,(°T,H = 0.

because, now

If we construct, in the same way, the supertensors and the tensors of the superenergy
from so-called ‘“‘pseudotensors of the energy-momentum’ which exist in the GRT, then
we will also get intrinsic tensors. These tensors may have more symmetry properties than
the pseudotensors from which they were obtained, e. g., the canonical superenergy tensor

pla (P, v°) of the gravitational field {gy

symmetric. Moreover, in this case, pt,(P, V) = g,,p1,%(P, t°) where the p1, (P, %) is
obtained from gt,,: = g,, 1,%

In the space-time of the ECT, i. e., in U, following Schouten’s notation [1], we will
define the superenergy supertensors and the superenergy tensors of a field @ which pos-
sesses an energy-momentum tensor or pseudotensor in the same way as in the space-time
of the GRT. We arc choosing that way, because:

1. For the full connection
A ..
i iv - { \4‘} } -Knv{L

}obtained from the canonical pseudotensor gz,” is
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there does not exist any NCS(P); here
K= 8, =87, +8%,
is the (—) contorsion tensor [4].
[

By

3. In the normal coordinate system NCS(P) for the Christoffel part of the connec-

2. Inthis theory the Christoffel part of the connection, } , is physically privileged [5].

tion,{ l?y}’ the calculation of the explicit form of the superenergy supertensors and the

o o . . . .
superenergy tensors for the gravitational field { } 18 easier than in e. g., connected with

By
r (tw)A‘

Obviously, in the framework of U, geometry it is most natural to express the super-
energy supertensors and the superenergy tensors with the help of the full connection I',,*.
We will be able to do that if we use the identities which connect V with V and R
with R,,;%(I'). These identities are given e. g., in [1].

2. The canonical superenergy supertensor and the canonical superenergy tensor of the gravi-

tational field { g; } in the Einstein-Cartan Theory

In the following we will work in the framework of the ECT geometry. In this section
we will use the canonical energy-momentum pseudotensor of the pseudoeinsteinian (or
combined) version of the ECT [4]. Formally, this pseudotensor is constructed from Christof-

fel’s part of the connection { ﬁ)’} in exatly the same way as the Einstein pseudotensor gt,”.

o

In the GRT the field of the Christoffel connection { By

} has the usual physical interpre-

tation of the gravitational field.
In the framework of the ECT we can interpret the Christoffel part of the connection

)L ﬁay} also as the gravitational field [5}.

Let us construct, in the way described in Section 1, the canonical superenergy tensor

gy} in the ECT. We will denote this tensor by pt,’(P, v9. As

a result of a long calculation, we get

of the gravitational ﬁeld{

<y K Oy O oq RN vdAige* O
Pt,u (Pa Ug) = 5 (U Uﬂ'— g ﬂ) {% [T uxf —% 511R'A' . a(r)Rloeﬁ(r)]
2 [T s~ SURME YD)R o i(1)]

+xy [R&K)+R “E]+k* Y [K K- R+(3K) (?71()
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+(\’;K) -E+E-E]+x*Y [&K)K ‘K+E-K-K]
+E N (K KKK} = = (= 00 )

®",.; is the tensor within the bracket {} and

C4
K = =
167G

S =

E denotes here the modified canonical energy-momentum tensor = kw3184

KT;B'g“” [4], R — the curvature tensor R,,;"(I) of the full connection I';,; K — the conspin

tensor K% = 1t —t}, +, + 600, —g,,t'.* and V means the covariant derivative

with respect to the Christoffel part of the connection{ x

By

tum tensor [4]. £ denotes the sum of expressions the detailed form of which is not impor-
tant for our present purpose and is symbolically shortened as indicated in the square
brackets. These expressions represent the interaction terms.

The tensor x®’,,, is the canonical superenergy supertensor of the gravitational field

{oc } The T7,,; is the tensor

}. 7,,,"is the spin-angular momen-

By
P i = RTUDIR, 05D + R (DR, 01 — % 81R72 (DR (1) e
and
Tg 1= RITUDIR, 15D+ R S(DIR, 1) — % 83R¥E ()R o p(T). )
We have

T-vaﬂ = Oa Tvuaﬂ = Tuvaﬂ = Tvuﬂas

T =0, Ty = Thup = Toupa-

In vacuum pf,%(P, v%) possesses a simpler form
. K 0y 0 [ Sy e LI
plu (P, 0%) = 35 @ — g (T wap + Woag }- 6)

srT nep denotes here the vacuum Bel-Robinson tensor
8- Tuap 1= ClindCl g+ *Cli*Cl % = CloChnp+ C2%5 Ciroa—3 800 CHClinps
*Cotow 1= % 'lva??;;a No123 = \/——g .
The W’,.; is the tensor
Cu = C1Choap+ C Y pChnra—4 8upBuC " Ciaag

and C,,,; denotes the Weyl tensor.
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In vacuum, the tensor pt,,: = g,,pt,"(P, v?) is the symmetric tensor: pt,, = pt,..

We will call the tensor (4) the generalized Bel-Robinson tensor and we will shortly
denote it by GBRT. This tensor is a natural generalization of the standard Bel-Robinson
tensor on the tensor field R,.;"(I'). This can be seen from the following facts:
1°. Tinap = Rigoal) R (D) + *Rypur ) *R,% (') and by the formula of the same form,
the standard Bel-Robinson tensor (denoted by BRT shortly from now on) is defined in
the framework of the GRT [6, 7]
2°. The GBRT closely corresponds to the BRT physically, because both of them follow
from the analogical, quasimaxwellian system of equations (see Section 3).

1t is obvious that in the framework of the ECT we can represent the explicite form
of the pt,”(P, %) in one of the three privileged modes:
1° With the use of the tensor R,,,*(I') as in (3).
2° With the use of the tensor R,,;"({ }), i. ., with the use of the Riemannian part of the

full curvature.
3° With the use of the Weyl tensor C,;,;"({ }).

It is a consequence of the identities [I] which exist between the components of the
tensors R,,;"(I), R;,;"({ }) and C,;;"({ }) in the framework of the U, geometry. In every
representation the contribution to the pt,"(P, v°) arising only from the curvature tensor
that we have used has the same structure as the contribution arising from the R,,,"(I')
in (3). Only the contribution which depends on the presence of matter will be changed.

In the framework of the GRT the canonical superenergy supertensor and the canonical

o
By
and pt, (P, v°) respectively in which terms depended of the spin have been neglected. The full
expressions are constructed in this case from the tensor R,,;"({ }) (or C,;;%({ })) and from
the dynamical energy-momentum tensor of matter.

The BRT enters explicitly in these expressions.

superenergy tensor of the gravitational field }possess formally the same form as k®! ,,;

3. The Maxwellian superenergy supertensor of the tensor field R,,;"(I') in the ECT
Physically, the field R,,;"(I') is connected with the differences of the gravitational

fieldd &\ Thus, in the framework of the ECT, we cannot expect the field R}, ;*(I") to possess
By g

the Lagrangian and the energy-momentum tensor. However, we might hope that this field
possesses the supertensors and the tensors of the superenergy. This point of view is sup-
ported by the explicit form of the expression (3) in which one can easily see the contribu-
tion to the canonical superenergy supertensor of the gravitational field { ;; } arising only
from the field R,,;"(I"). This contribution is quadratic in R,;;"(I'). The superenergy
o
By
contain analogical contributions.

Obviously, we must define the superenergy supertensors of the tensor field R,,;%(I")

supertensors of the field { } calculated from other energy-momentum pseudotensors
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in a different way than in Section 1. First of all, in this case no averaging is needed to
obtain the four-index tensor whose components have the dimension of the components
of the superenergy supertensor. We may define the superenergy supertensor and the
superenergy tensor of the field R,,;%(I') in a pure algebraic way. It is known that in the
framework of ECT the field R,,;"(I) satisfies the following system of equations, possessing
the Maxwellian structure
ViuRie1® = 25, R 1025 @)
V Rx),vu le‘l (8)
Here
IR = 2RV TV 4 dier HIeIR YT A
+ 282 T, Y — 3RV (VT A — 2elinlelg v

+ VIRgIE_pjegleslelpl Ay ylugrile

—2fcglanlely A A —2125[3‘?“."‘?‘.‘](; ). )

In the formulae (8) and (9) K = -EZ—, gT,p denotes the modified canonical energy-

-momentum tensor of matter and 'f;,;f: = —%5‘ T, — 162 Tu. is the modified spin-
-tensor.

The identities (7) are known as the Bianchi identities [1]. We can obtain from them
new identities [1] which combined with the ECT system of equations give equation (8).
The equations (7) and (8) characterize the field R,,;%(I') in the framework of the ECT.
Consequently, we propose to determine the superenergy supertensors of the field R,,;*(I")
from these equations. We define here the Maxwellian superenergy supertensors of the field
R,,;"(I') as the tensor.

S pap = KT g (10)
where T” ., is the tensor obtained from the system of equations (7) and (8) in the following
way [10]:
1° We transvect (7) with the tensor R'®*,(I') and get the new identities

R4V Ryaio— 3 RV R0 = 3R™SS0R p10s an

2° We add, side by side, to the identities (11) the identities obtained from (11) by trans-
position of the indices (5, ¢) and get, after a simple calculation with the help of (8) and ECT
equations

Vy(RY 4 Ryirig+ R R s — 3 ORI Ris) = 6RRCYAGT TR 1o+ 20 R iy (12)
3° We put
Tyse i= R Ryie+ R Rris—% SLR7H Ry 13)

It is seen that the tensor 7" ; is identical with the GBRT.

m’o
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The muitiplier k in (10) guarantees the proper dimension of the components of the
tensor S’ ,,;. The necessity of this multiplier is obviously seen from (3).

When the identical procedure, as above, is applied to the full system of Maxwell
equations in ECT, it gives

1 1
VoemT% = —32 %" FiF@+ ——J"F' 5 — KF %, F (14)

eml%, denotes here the dynamical (or Maxwellian) energy-momentum tensor of the
electromagnetic field F,, [11]. Thus, the method of construction of the Maxwellian super-
energy supertensor of the field R,,;"(I) is identical with the first step of construction of
the dynamical superenergy supertensor of the electromagnetic field F,, with the help
of Maxwell equations, i.e., with the construction of the dynamical energy-momentum
tensor of this field from Maxwell equations. Consequently, with respect to the indices (¥,)
the supertensor S7,,, possesses the same algebraic and analytic properties as .77, .
No other possible superenergy supertensor of the field R,.,;"(I') will have such properties.

It is obviously seen that working still in the framework of ECT we may define, in

a similar way as above, the Maxwellian superenergy supertensors of the tensor fields

R} and Ci%({}). The Maxwellian superenergy supertensor of the Riemannian
part R,,,,*({}) of the full curvature is formally identical with the BRT of the GRT multiplied
by x. We may call this tensor the (multiplied by k) Bel-Robinson tensor of the ECT.
The geometric identities which connect the components of the tensors R,,;"(I'), R,,;"({ })
and C,;;%({ }) lead to the corresponding relationships between Maxwellian superenergy
supertensors of these tensors. The Maxwellian superenergy supertensor of the Weyl
tensor is the irreducible component of the Maxwellian superenergy supertensors of the
field R,,;*(I) and the field R,.;"({}D.

All the considerations that we have made up to now may be repeated, with a small
simplification, in the framework of the standard GRT. Especially, in the framework of
GRT we will get that the Maxwellian superenergy supertensor of the tensor field R;,;%({ })
determined from the system of equations corresponding to the equations (7) and (8)
is identical with the BRT multiplied by . Thus, on the superenergy level, we may interpret
the xx GBRT and the ¥ X BRT to be the Maxwellian superenergy supertensors of the
fields R,.;“(I') and R,,;%({ }) respectively. In consequence of such an interpretation,

the presence of these tensors in the superenergy supertensors of the gravitational field gy}

can be explained as the contribution to the superenergy supertensors of the field ;y
arising from the Maxwellian superenergy of the field R,,;"(I") or from the Maxwellian
superenergy of the field R,,;*({ }). In our opinion, the physical interpretation of the tensors
k x GBRT and x x BRT given above is more appropriate than the attempts to interpretate
these tensors by means of expansions of pseudotensors in the NCS(P) [12, 13]. This opinion
follows from the fact that these tensors are a natural consequence of the quasimaxwellian
system of equations (7) and (8) and they are not a natural consequence of the structure
of the pseudotensors.
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Finally, we shall construct from the components of the tensor S”,.; the expressions
for the superenergy density & of the field R,,;%(I) and for the Poynting supervector P,
of this field. Let us consider an observer 0 using the orthonormal tetrad {e,,(P)}. Following
to (3) we form the two-index tensor

M (P, %) 1= } 0 — g)S 0. (15)

The tensor M;(P,v%) is the Maxwellian superenergy tensor of the field R,,;"(I) for
the observer 0. Thus for the observer 0

s 0u0y Xk ‘e
g = M, 0" = Mg,

Py = (O~ 0"0)M,,0" ——>Po = 0, Py = My, (16)

are the superenergy density and the Poynting supervector connected with the Maxwellian
superenergy tensor of the field R,,;*(I).
In vacuum

K e K e
&g %l‘ —2— BRTOOOO’ PQ % 0) PK Ol:—[' 3 BRTKOOO’ (17)

The authors wishes to thank Professor A. Trautman for his interest in this work and,
especially, Dr S. Bazanski for the critical reading of the manuscript and for many useful
remarks.

REFERENCES

[1] J. A. Schouten, Ricci-Calculus, Springer-Verlag, Berlin 1954,

[2]1 F. A. E. Pirani, Phys. Rev. 105, 1089 (1957).

[3]1 O. Veblen, Invariants of Quadratic Differential Forms, Cambridge at the University Press, Cam-
bridge 1933,

[4]1 F. W. Hehl, GRG, 4, 333 (1973); GRG, 5, 491 (1974).

[5s] W. Kopczynski, Doctoral Dissertation, Warsaw 1973,

[6] L. Bel, Compt. rend. 247, 1094 (1958); Compt. rend. 248, 1297 (1959); Cahiers de Phys. 16, 59 (1962).

[7] Ch. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman and Company, San
Francisco 1973.

[8] A. Trautman, On the Structure of the Einstein-Cartan Equations, Istituto Nazionale di alta Mate-
matica, Symposia Matematica 12, 139 (1973).

[9] J. Garecki, Doctoral Dissertation, Cracow 1973.

[10] F. Oktem, Nuove Cimento 58B, 167 (1968).

[11]1 L. D. Landau, E. M. Lifshyts, Classical Field Theory, Science Publishers, Moscow 1973
(in Russian).

[12] J. Garecki, Acta Phys. Pol. B4, 537 (1973).

[13] A. P. Yefremov, Acta Phys. Pol. B6, 667 (1975).



