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Some divergent integrals encountered in the Kondo-Yang-Mills model of strong
interactions are analyzed in » dimensions. This is to argue that the gauge which was used
by Stuller in order to determine the mass of quarks can be characterized at n = 4 explicitly
by the gauge parameter § = 2. The possible existence of such values of the coupling constant
for which & will be undetermined is indicated.

1. Introduction

This paper is thought as a comment in addendum to recent work by Stuller [1] on
Kondo like models of strong interactions. The underlying physical idea is that perhaps
a mechanism responsible for quark confinement may be analogous to that causing the
Kondo effect [2] in solid state physics. The analogy is set by identification of the solid
with physical vacuum, spin } impurity with a colored quark, spin waves with colored
Yang-Milis gluons and excitons with color singlet hadrons.

The first task in this Kondo-Yang-Mills picture was to find a viable equation for
the quark mass. This was to see what sort of dynamics is to be exhibited by the Yang-Mills
theory as to yield an infinite value of the quark mass (not as a constituent) which could
explain the (total) confinement. This equation was formulated by fixing the gauge that
does not affect positions of the quark pole (not so for the residuum) and quark-antiquark
singularities. The gauge group is assumed to be a G x SU(3) color, but here we are not
referring to the strong group G at all.

In Section 2 we will recall under what assumptions the eigenvalue equation for the
quark mass was derived by Stuller [3]. Thereby the gauge to be used throughout was
defined quite indirectly, and in Section 3 we will evaluate the gauge parameter explicitly.
This will allow us to see under what additional assumptions a possibly infinite (or even
undetermined) value of this parameter might be excluded.

The methods we are using are borrowed from the dimensional regularization in
practice. We could not fully appreciate the original methods of 't Hooft and Veltman [4]
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as these are not well adapted for a regularization of integrals which are both infrared and
ultraviolet divergent as will be encountered here. Therefore our results are borne with
an arbitrariness due to our way of defining these integrals.

2. The equation for the quark mass
The nonperturbative form of the eigenvalue equation for the quark mass
Mk 2= 2 = m (2.1)
is to be deduced from the Schwinger-Dyson equation for the quark propagator G(k)

_ , A v a
G~ k) = yk+mo+ig’y* 5 j d*pG(k—p)I'y(k— p, K)Fa(p) (2.2)

where ¢ = 1,2, ..., 8, 4,/2 is the fundamental representation of the SU(3) color and m,
is a bare mass. The vector gluon propagator ¥®(p) was decomposed, due to the first
Slavnov identity [5], into gauge dependent and gauge independent parts

PuPy PuPy\ 4o P°)
ga’:-(l’) = 5a 6""‘— + (g v L) (2'3)
[ b ( pz)z u p2 p2
Here d,(p?) is the function responsible for the dynamics and ¢ is a gauge parameter
(¢ = 0in the Landau gauge, £ = 1 in the Feynman gauge, and ¢ = 3 in the Yennie gauge).
The assumption motivated by the Kondo mechanism was

da(p®) = Sad(p”) 24

and for the vertex function it was simply assumed that

A/ v A’b
Iyk—p, k) =17 5 (2.5)
Defining
Gk = Ak (yk+m(k?)) (2.6)
equation (2.2) becomes a system of two highly coupled equations for A(k?) and m(k?)
by o gt [ty M=
. 2 it v
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8
with ¢, = ¥ (4./2)%
a=1

The crucial assumption was that d(p?) behaves in such a way that the main contribution
to the above integrals is coming from small p* and m[(k —p)*] and A[(k —p)*] were simply
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replaced by m(k?®) and A4(k?*). At this point it becomes clear that fixing the gauge on the
quark mass shell (which is the region we are after) by setting

Aoz -z = 1 (2.9)
will provide the desired eigenvalue equation which reads
1
m = my—icog’m | d*p ————— £.,9"(D)iaz — 2. 2.10
0 08 p n12+(k-p)2 gu (p)kk =-m? ( )

Further (and for consistency) the infrared parametrization of the function d(p?)
was introduced

QZ A
d(p’) = (;;) +1, (2.11)

while the values of the parameter 2 were subjected to an ansatz. The Qin (2.11) is a constant
with the mass dimension. Let us notice that it is only for quantum electrodynamics when
A = 0, and that possible logarithms in the ultraviolet region arc ignored. This parametri-
zation reflects the fundamental physical assumption about vector mass spectrum extending
down to zero.

In order to characterize solutions to (2.10) there were ultraviolet and infrared cutoffs
used and it was argued that these two are intertwined in such an intriguing way as to leave
behind finite m for 1 < % and infinite m for 2 > } (the m, was taken to be zero). Hence,
it is the 4 > % ansatz which assures the (total) quark confinement. In spite of G = 0 for
A > 1. Stuller has also derived a Bethe-Salpeter equation for mesons with small quark masses
and this equation has turned out to be three dimensional (!). Further, it was noticed that
4 < 2 < 1 must be rejected as this would lead to an infinity of low lying meson states.

The disadvantages of this model are that it predicts Regge trajectories rising not
infinitely, and it is this total confinement which sounds rather too hard. It is clear that the
theory of strong interactions will require an input of more physical ideas, e.g., these from
Kondo models and superconductor models in one turn. Nevertheless, the results which
were recalled above, together with other interesting phenomenological consequences, are
in our opinion worth further investigations on their own right. First of all they are calling
for a thorough examination of the consistency of the A > | ansatz. This is because in
general there can be 4 = A(g?) and the vector gluon propagator has to satisfy its Schwinger-
-Dyson equation as well. This problems, however, will be pursued elsewhere and here we
will only try to evaluate the gauge parameter explicitely.

3. The evaluation of the gauge parameter

In the Stuller approach the gauge was defined quite implicitly by (2.9). This is, from
(2.8), equivalent to

ky(p—k)y*
Trjd“ IR (s s = O, 3.1)

m* + (p—?c)T
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where the gauge parameter is hidden in

"G p) = 3(£)4+(3+5)_1 3.2
g uvp'“pz 2 T (3.2)

The evaluation of traces in (3.1) gives

L) () 1,0

=14 - — = — oo 3.3
‘B =170 7 Lo T Lo (3-3)
where

— 22| 4 k(p—k)* 1
IL()-,) = 160 J‘d J4 [m2+(k—P)2] (p2)1+l k1=—~m2, (34)

2.v v 2.2

_ae2i | ga PPk, 2Kk, + KD 1

12(1) = 49 Jd p [m2+(k_p)2] (p2)2+). e (3.5)

This expression for £(4) is only formal since it involves the integrals (3.4) and (3.5) which
are plagued with both ultraviolet and infrared divergencies. Note that the condition on
the mass shell implements an additional infrared divergence.

In order to give a meaning to &(4) we propose evaluating (3.4) and (3.5) as n-dimen-
sional integrals, treating », appearing in the results I, »(4, n), as a continuous complex
parameter, taking the corresponding ratios still for generic #» and then defining

&) = lim &(4, n). (3.6)
n—4
The results are
4
r (/1+ 5 n)
I A, — 16-92;. n/2. n—2-—24
1(4, n) i7" m ——_—F(}.—i—l)
1 1
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1 1
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The results for A = 0 to be read off from (3.7) and (3.8) were also checked by other methods.
In getting the above answers the technical problem was that for physically reasonable
values of A (noninteger A > 1) the Feynman parametric integration could not be applied
in its simplest form and we were using formulae like

1
Py m+1)

dxx*e™?™, 3.9

Now, as promised, we are still keeping n complex and write the remaining (other-
wise divergent) integrals over the Feynman parameter x as S-functions which we further
express by I'-functions. This gives

: 4—n\ ([(n—3-2}) TI(n—2-2A

L(A n) = 16iQ% " 2= 2=2p (14 271 n ’ L )
2 F(n—2-4i) T(n—1-42)

r(n—3—24) . I(n—2-24)
rn—-2-4) I'(n—1-24)

4—nm\IP(n—~5-20) I(n—3-24)
+2(} )F(n—l —2) F(n—l—,l)}' 3.11)

) , (3.10)

4—
I,(A, n) = —4iQ* g 2m"~2-24p (l+ zn){

We obviously wish to interprete (3.10) and (3.11) as analytic continuations of (3.7) and
(3.8), respectively, and now we see that we can really do so only if 1 takes values in the
interval (1, 3/2) or only in (3/2,2), etc. For values of A varying in just one of such
intervals it is seen that

Il(/i, n) . Iz(la n)
im - = lim =
aa 1,00, 1) asa 1,(0, 0)

To get the final answer we still need to evaluate the last ratio in (3.3). This is found to be
equal —1 from

(3.12)

4
I, 500, n) = F8in"2m"~2r (7-") (3.13)

and we get that the value of the gauge parameter in the physical case n = 4 is
& =2 (3.14)

To summarize, we have shown that if the infrared behaviour of the theory would
be such as expressed by (2.11), but with values of the parameter A lying in the specific
interval (2+a)/2, 3+a)/2) (@ =0,1,2,...), then it is possible to define the gauge
parameter corresponding to (2.9) in such a way that it does not depend on the
(assumed) dynamics anymore and is finite. The value ¢ = 2, which we have obtained,
characterizes the gauge defined by the condition on the mass shell (2.9) which is something
in between the well known Feynman and Yennie gauges. All this, however, has been
achieved by paying perhaps the cost of admitting the existence of a sequence of some
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strange “‘critical points”. These points could be just this values of the coupling constant g2
at which the function A(g?) would take the boundary values equal to 3/2, 2, 5/2, etc. and,
when meeting them the gauge parameter could not be determined by the method proposed
here. Thus, it is aiso the example of the problem of the gauge parameter which brings
out how welcome it would be to know the general 4 = A(g?) dependence for studying the
consistency of the Stuller-Kondo model of strong interactions.

The author is indebted to L. Stuller, P. Rembiesa and H. Arodz for discussions.
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