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RAPIDITY DISTRIBUTIONS OF LARGE TRANSVERSE
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Cross sections and correlations of large transverse momentum particles are calcula-
ted in the hard collision model as function of the transverse momenta and of the rapidities.
We choose jets with deviation from scaling and limited transverse momenta relative to the
jet axis and find short range rapidity correlation of large transverse momentum particles
on the same or the opposite side as the trigger particle. The correlation length is related to
the width of the transverse momentum distribution in the jet system and decreases with
rising transverse momenta of the two particles, quite in agreement with experimental data.

1. Introduction

There was considerable progress in the experimental exploration of collision processes
with large transverse momentum particles within the last year [1, 2]. In this paper we use
the hard collision model as in Ref. [3] (which in the following is denoted by I) for the
calculation of inclusive cross sections for the production of one or several large trans-
verse momentum particles. In I we studied the properties of jets and worked out large
transverse momentum correlations at 9 =~ 90° as function of transverse momentum.
The emphasis of the present paper is on correlations of large transverse momentum particles
in the rapidity variable.

The hard collision model used here is the same as in I but in order to study the
rapidity dependence of particle production cross sections we have to specify the angular
dependence of the underlying jet production cross section. Throughout the paper we use
a jet production cross section which corresponds to the irreducible subprocess parton
+ antiparton — jet + jet, but we concentrate mainly on the kinematics, on the properties
of large transverse momentum particle production influenced by the properties of jets
but not on the dynamics of jet production. For the purpose of our calculation we could
have used also different dynamical jet production mechanisms.

* Address: Karl-Marx-Universitit, Sektion Physik, 701 Leipzig, Linnéstrasse 5, GDR.
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Our jets — introduced in 1 — deviate from scaling at finite energy and arc characterized
by limited transverse momentum of the particles relative to the jet axis. We stress that
jets with total momenta below 2 GeV/e decay still rather isotropically; the unisotropic
jet like nature develops rather slowly only at higher momenta. Large transverse momentum
correlations are only known experimentally for trigger momenta of 2 to 3 GeV/c. Therefore,
in order to compare with present experiments it seems to us that the non-asymptotic
properties of jets are essential.
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Fig. 1. Comparison of the opposite side distribution dN/fdx. according to Ref. [12] compared with curves
due to our jet parametrization. It is x. = ¢ »/g | ; where particle 1 is the same side trigger and ¢ , is
the transverse momentum of the opposite side particle

The model has been used successfully to describe same side large transverse momentum
correlations [4, 3, 5] and opposite side large transverse momentum correlations [4, 5).
Qur description differs from the one in Ref. [5] in two respects:

(/) In contrast to our treatment Ellis et al. use jets with exact scaling.

(ii) Elis et al. find evidence for jets containing only one particle and describe them
by a second delta-function like contribution to the inclusive jet fragmentation function.
Conclusion (ii) was reached by Ellis et al. {5} from the comparison of the opposite side
distribution dN/dx, with data from Darriulat et al. [12]). We agree that it would be better
to replace the inclusive jet fragmentation function by the sum of exclusive contributions
from jets fragmenting into a definite number n = 1, 2, ... of particles. As long as we do
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not use such a description the inclusive jet fragmentation function is only expected to
approximate the sum of these contributions.

In Fig. 1 we compare the same data on dN/dx, [12] used by Ellis et al. [5] with the
distribution which we calculate using our jet parametrization.

As Ellis et al. [5], we assume that the jets contain 609, charged particles. The data
of Ref. [12] corresponds to trigger transverse momenta 2.3 GeV/c <g,, < 3.3 GeV/c, with
g,, = 3.3GeV/c dominating near x, $ 0.4and lower trigger momenta dominating
around x, ~ 1. Therefore we plot the calculated curves for trigger momenta 2, 2.6 and
3.2 GeV/c. Similar to Ellis et al. we find the calculated curves at large x, bigger than the
data but the disagreement is less dramatic than the factor 2 found in Ref. [5].

The paper is organized as follows: In Section 2 we give details about jet production
and jet fragmentation. In Section 3 we derive expressions for one-, two-, and three -particle
distributions in large transverse momentum and in rapidity, and in Section 4 we discuss
the rapidity distributions, compare them with data and work out the rapidity correlation
length for two large transverse momentum particles from the same jet. Section 5 summarizes
our points.

2. Production and fragmentation of jets
2.1. Jet production

In the hard collision model (Fig. 1) jets are produced by the collision of two constitu-
ents i and j belonging to the incoming hadrons 4 and B. The two-jet production cross
section was already discussed by Bjorken [6]

t
BE. p i me(xl)f,p(xz) Pl D s sap). @)
E, (E;)) and P,(P,) are the energy and momentum of the same side (opposite side) jet.
The function f4(x,) [ f;s(x2)] describes the fragmentation of the incoming hadron A(B)
into constituents 7 (f) where the constituent i (j) carries the fraction x,(x,) of the mo-
mentum of the incoming hadron A4 (B). s/, ¢, and «' are the Mandelstam variables for
the collision of these constituents i/ and j. We denote the jet momenta and angles in the

overall cms. by P, P, 0, and 0,. s’, t’, x; and x, can be expressed in terms of these
variables [6]
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do;;/dt’ is the differential cross section for the scattering of the constituents i and j. It
contains the dynamics of the hard coliision process [7-10]

doy; (1Y
—L = =) |A(Gi+j 2, .
ar (s,> |A(i+j — s+0)| (2.3)
In our calculation we neglect the mass of the jet and approximate
d*p P,
5 ~ PdPdcos 0,dg = - *G dP  d0,d¢. 2.4
s

J

In this approximation, Eq. (2.1) takes the form

d*s, _ 4¢P P, [ 1

Do) 2 5P 4P, @5
— — s x : . .
dP AP, ,d0,d0,, sinb,,sin0,| n )l jpl¥2) T AP L4 B (

5J

In fact, this is only a function of one transverse momentum, such that
3
day 4¢P

dP d0,.d0,,  sin B, sin 0,

1 daij ) g
; fiA(xl)ij(x2) “d“t—, = W(P,, by, 05, \/S)- (2.6)
i,J

The jet production cross section depends on the nature of the constituents and the dynamics
of their scattering. The investigation of this dynamics is the central problem of large trans-
verse momentum collisions. Present experimental data is difficult to understand in terms

G(E. Py, Pu)

Gl 'g'pifz' p.r_z 4

Fig. 2. The hard scattering mechanism explained in the text

of any of the proposed hard scattering mechanisms. In this paper — as in I — we do not
try to find the proper dynamics, but rather study only kinematical properties of jets.
In order to illustrate the two-jet cross section we introduce the parametrization of

do;
Barger and Phillips [11] for the function f;4(xs) {f;5(x)} and for "

we use phase space

tl
weighted with 4 ~ 1/s’. For quark-antiquark scattering we obtain at fixed P, the two-jet
production cross section plotted in Fig. 3 in form of a contour plot in the 8,,, 0,, plane. In

T
the large angle region 8,, ~ 6, ~ 5 this distribution is almost independent of 6,, and 0,,.
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Fig. 3. Contour plot of the two-jet production cross section W(P ), 8y, 010, v/5) for P, = 2.65 GeV/c
and /3 = 50 GeV calculated according to Eq. (2.6) using the parametrization of Ref. [11] for quark
(valence + sea) — antiquark (sea only) scattering

For phenomenological purposes we might use as in I an empirical parametrization
of the jet production cross section

4 c 1 X( 2DPL> e

sin 0, - sin 8,, Fi P \— N

which is independent of 8,, and @,, in the central region.

W(P_L, o.ls, 610’ \/5) =

2.2. Jet fragmentation

As in I we describe the jet fragmentation into particles of kind v by the distribution
d’n 7\ ri Pl
GJP, p, py) = é”c—ﬁ; =nBfl- Ve exp [ — — 5 |

P+ — b+ —
P +M2

2.9

Again, Pis the total jet momentum and & and p are energy and momentum of the considered
particle v in the jet system. B is determined from the energy sum rule assuming the same
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kind of distribution for all kinds of particles (see T). The parameters b, F, M, A have been
determined by a fit to SPEAR data for charged particles (see I)
b = 0.355GeVje, M =09GeV, 2.9)
F=2, A = 1.6 GeVje.
n, = ng, is the fraction of charged secondaries. The fit gives n,, = 0.7 for E_, = 3 GeV
and ng, = 0.5 for E.,, = 7.4 GeV, quite in agreement with the increasing neutral excess
found by experiments.

To simplify the calculation of same side and opposite side particle distributions as
functions of ¢ | and y (g, and y are the c.m.s. transverse momentum and the c.m.s. rapidity
of the particle considered) in Sections 3 and 4 we consider all particles to have the same
azimuthal angle ¢ as the jet. Therefore we introduce the two transversc momentum com-
ponents p,, and p,, in the jet system and integrate over p,,. Neglecting p ,‘in the

energy &, this gives
PRI J7 G(P ) (2.10)
e = T 2 Pys Py x)- .
dp,dp, . P

For approximate analytical calculation we use the simplified jet fragmentation function
(neglecting the deviations from scaling in Eq. (2.5)

y F+ir o g\ Pl
(’(P,P”sP_L):'F( ——1—;) CXP("' 1. (2.11)

Following I, the two-particle distribution in jet decay is assumed to be uncorrelated

d°n _ (n(r—1)),
d*pid’p, (nyj

é,6, G(P, Py PGP, Pyas Py2) (2.12)

3. The calculation of distributions at large transverse momentum taking into account the
transverse momentum distribution within the jet

In this Section we derive expressions for inclusive single particle distributions, same
side and opposite side two-particle distributions as well as three-particle distributions in
the hard collision model. This mode! gives the mechanism for jet production and frag>
mentation and was described in Section 2.

3.1. Same side two-particle cross section

First we discuss the calculation in detail for the distribution of two particles on the
same hemisphere (both particles result from the jet s). The same method can be applied
for all other distributions mentioned; for these we only give the results.

The invariant distribution of two particles in the same hemisphere is obtained by
folding jet production and jet decay. We consider in the jet fragmentation Eq. (2.10)
only momentum components within the collision plane (determined by the incoming.
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hadrons and the two jets). Therefore we obtain the invariant two-particle distribution
within this plane

0.0 d*s g
919 = JFos
e dq1d9299 1199 129,14, 2 ?
Vsj2 95(2) 8,(2)
d’o,
= dp db;, do,, ———-"—o
J + J ! J " dP  d0,,d6,,
a3,.4 g, (1) 8,(1) :

d*n d’n  (n(n—1)),
i 14D 1 x, dPuzdP_sz (ny;

X J‘dPuldPJ_x,dPuzdP_sz dp

% é <91 - [Ojs-f-afCtg p_-Lﬁj‘) 5(‘11_:1 - [pu 1 sin 9J5+p_§_x1 cos 615})
Pyt

x 6 (92— [9,s+arctg plxz]) 0(q 5, —[py2sin 05+ p &, cos O]). (3.1

P2

g; and 9; (i = 1, 2) denote the momentum and angle of particle i in the c. m. s. They are
related to the momentum and angle in the jet system by (see Fig. 4)

9= 0,,+3 = 0,,+arctg LA (3.2)
Py
and
q, = pysinb,+p ,cosdy, (3.3)
X
P

- 2Z

Fig. 4. The relation between the variables in the jet system pj;, p ) x. ® and the c. m. s. variables 4,491, 9
and the jet variables P and 8y,
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where all particles are in the x, z plane with ¢ = 0. These relations are expressed by the &
functions in Eq. (3.1). The limits of integration for the polar angles 8;, and ¢,, of the jets
are obtained from energy momentum conservation.

The transverse momenta of the two jets are always identical within the hard collision
model. The conservation of longitudinal momentum can be written in the form

Pyo+Pys = Py, G4
where P, (Py,) is the longitudinal momentum of the opposite (same) side jet
Ploey = P ctg Oy4)- (3.5)

P, is the longitudinal momentum of the low transverse momentum component which is
present in general. We write energy conservation in the form

VP, 5 PE + VPP + VPl = 5. (3.6)

Here we assume the mass of the jets and the invariant mass of the low transverse
momentum component are negligible at the kinematic limit. We determine the kinematical
limit for 0, from the requirement

P P, \/s

s = 3-7
sin 8 h 2 (37
and obtain
2P
6 = arcsin —=,
\/s
02 = g~ arcsm —= (3.8)

\/s
For given P, we determine the kinematical limits for Py, from Eqs (3.4) and (3.6);
they are

Py, = %(_bwm)
with
a = 4(s+P2 =2 /s P3+P2),
b = 2P (s+2P% —2 /s VP34 P?),

cC =3 +4SPIIS+4SP2 '—'4P2 P“S 4S \/S '\/P“s+Pi . (3.9)
Py, is given by Eq. (3.5). We obtain 65" and 0® according to

P
o = arctg( ||o1)
P_L

P
0P = arctg( "°2). (3.10)
P_L
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We insert the expression for

d30; ] . . d*n . .
AP d0,.do,, given in Eq. (2.6) and the expression for o i (i =1,2) obtained
from Eq. (2.10) putting approximately &;~ p;.

We have
V572 9,5(2) 8,(2)
S =nb> | dP, [ db, [ dO, ,W(P,05,0,, /)
‘I)_xx'*"I_L," ALY (1)

d d d d ———l —-1 G —L G L
X s ’ x1 p s s x2
P|14P|29P ) x,4P | x, 1 P2 sin 0, PPy sin 0, Pya2 P

(n(n 2 ] (S, - [9,s+arc tg p“’]) ] <92 - [8,g+arc tg p”z—J)
<">J P D)2

x8(q,x,— [Py sin b+ p, , cos 0, 0(q 5, —[Py2sin Oy +p, o, cos 6, ). (3.11)

We integrate first over p . and p | , using the é functions with the 9, variables (i = 1,2),
with

‘/573 8,(2) 9,42)
) 1
/25 = ﬂbz J dP Jv d@_,s j dOJOW(P_L! 015, 010’ \/ Ql(?n‘}_)z{
T tisy,, g,(0 o 7

1 P
8 G{ == P> Py t8 (9, — 0y
cos? (8, —0,,) cos® (8, —0,,) (sin o, PP g (% ,))

G P, £(5,—0,)) 5 sin 3,
o 01,P||2sp||z g (2 — 0y 417 P o cos (9, —0,,)

. sin 3, 312
X0 q”_p”zcos—(\‘f;éj) . (3.12)

with i .
551) = max egl)’ 91_ s ‘92_ ~ I3
2 2
- T ¥
0P = min| 0, 3+ —, %+ — ), (3.13)
2 2
We integrate over dp;, and dp,, using the J-functions and obtain
d*e iy
_q q = s
dq“xdq”z‘qulquudqlz same 2
Vsj2 B2 9,42

3 1
= n'bz dP, dG_]S d@]o R A N
- cos (§; — 0, cos (3, —8;,) sin 9, sin 9,

a4, ,%4,, B,(1) 8,(H
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<n(n-—1)>, - P COS (91~9J) Sin (3 —'8 )
S WP 05 050 VG —2—, s LA
nd? (P 0550 B30 V5) sin 0, 100 9, it =50 9,
P COS (\92—GJ ) Sin (92 "'9 )
G A , s, , Js. . .
<sin B, 912 sin 3, 112 sin 9, (3.14)

This expression can be evaluated numerically or by use of suitable approximations
for the functions W and G. We shall return to Eq. (3.14) in the next Section. Using the same
methods as for the same side correlations we calculate the following other distributions:

3.2. Single particle cross section

Vs 9,(2) 8,(2)
d*c
4]
q dpP Jd(),j‘dOQWP,OS,OO, s
= j | 0P L0000 )
8,(1) 8,tt)
— 1 P P
o ot (s o= ])
° s f
x0(q, —[py sin 05+ p, , cos 0y]). (3.15)
Integrating we obtain
8,(» 8,(2)
d*c 1
0 e = b dP, do,, do
1 dq q,dq Ve j j ! J ’° cos (3, —0,.)
a3 7,00 8(1)
- p cos ($—8;,) sin (8—8,,)
W(P_, 8 050r /5)G | —2—, : .
x sin 3 (P> s, O \/s) (sin 6, R sin 9 + sin 9 (319

where 89, 8 and 6", 0 are defined as in Eqs (3.8), (3.10) and (3.13), but all terms
with 3, are dropped.

3.3. Opposite side two-particle cross section

(particle 1 is the trigger (side s), particle 2 is on the opposite side 0)

V572 9,(2)
d*e
0.0 2
q14 = nb de Jst
' 2d‘h{ld‘x’{}ZQ_LIQ_LZdQ_LquJ.Z opposite + !
0y X!
8,02
x | d40,,W(P,,90,.0 J‘)fd dpydp, .d LY
s ’ o s . ] s X3
) Jo L2 Vs Uy ' Dy14py29P i x, pj,nglg,z sin 0, Py, Py
0,01

P 4
G "—l_ > L x. ) 6 ‘9 - 0 s t —
(sin 0,0 Py PL Y ( ! [ snarcle PHI:D

x 6 ('92 - l:glo""arc ig I;sz:l) 5(q_L1 - [plil sin 0+ Px, COS els])
iz

X(S(qi2—{p”2 Sin 6]0+P_Lx2 COS 9,03). (3‘17)
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It is
q,; for gq . =42

0, = (3.18)
g2 for 4.2 24,1
Integrating as above we obtain

2 Lo
‘ dq) 14929 1191299 | 199 | 2 lopposite
vs/2 8,(2) 8,2
1
= nb? dP do,, do,,
“ f L f s f 7° Cos (8, —0,5) cos (9, —0,,) sin 9, sin 9,
Q. 8,(1) 5,1}
P cos (3, —0y,) sin (8, —0;,)
W P s 0 3 0 0 G . L [ N s _____i
XWP L, Or 0100 /) (sm 0, 11 " n 9, T " 5n 9,
P cos (8,—6,) sin (8,—05.)
G|-—=—, >, : .
x (sin 0y, 112 sin 3, 12 sin 9, (3.19)

The limits of integration 0% and 6" (i = 1, 2) are given in Eqs (3.8) and (3.10). Further-
mo re

n n
6" = max <9§1), 9 — —-2-> ,  0? = min (n—f)gl), 9+ —2—> ,

" = max (eg”, 9y~ ;) 0 = min (95,”, 9,+ g) (3.20)

3.4. Opposite side three-particle cross section
(particle 1 is the trigger, side s; particle 2 and 3 are on the opposite side o)
dc

dq149y249 39 119,249,399, 149 249 | 3

vz 0,(2) 0,(2)

= j dpP, j by, j d0;0W(P 1, 0y, 00, \/E)de[udPuzdPus
g, eY) 8,(»

b3n®? P {n(n—1)>,
d xd x,d G = ’ » x ] T 2
xf PonlPinthing 5.6, (sine,s P P ) <n;

Y it G( Py

X a0 H X2 V) s x3

sin 0, Pz Py sin 6,, Pys Py

% 0 (91 - [0,s+arc tg p—l’i‘:D 0 (92— [0,o+arc tg I_’L"_Z])
Pjs D2

X0 <93 - [0,0+arc tg PJ_xil) 0(qy1—Lpy1sin 05+ p, &, c0s 0,])

14T

939593

opposite

x0(q2—[py28in 05+ p x, €08 0;D0(g, 3—[P 3 8in 05, +p, x, c08 05,]).  (3.21)
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Further it is

q;, for 411 =249,2%4,3
0, = (3.22)
g 2+4;3 for g,,+q9,3>4,;.

Integrating as above we obtain
dc

dQH1dqllqu”3qllql2qlsd‘1¢1d‘1lzd4¢3 opposite

439543

v5jZ 9,(2) B2

1
= 73/%p3 dapP j dg a8
i J + * 7 cos (8, —0,,) cos (9, —0,,)

Q5 2,0 8,1

1 K(n=1),

x
cos (9;—0,,) sin 9, sin 9, sin 8; ()}

G P—L COS (91 _BJS) Sill (91 _GJS)
sin 0, 11t 94 10 9

W(P,L’ olsa 0Jo) \/5)

<G P, cos (8, —0,,) sin (3,—6,,)
sinf,,” 142 sing, T g,

( P, cos (953 —0,,) sin (85— 610)) . (3.23)

4.3 : q.3 ;
sinf,,” "+ sin 9, 1 sin 94

The limits of integration 8% and 6" (i = 1, 2) are given in Eqs (3.8) and (3.10). Further-
more

. T
8V = max (9?), 89— 3>, 0¥ = min (R“ogl)’ i+ 5) ’

8" = max (Of,”, 9, - z » 93— 1) ,
2 2

65 = min (68’, 9+ g—, 9;+ “;—) (3.24)

4. Rapidity distributions of large transverse momentum particles

4.]1. Same side and opposite side two-particle cross sections

For fixed transverse momentum and rapidity of the trigger particle 1 we obtain the
rapidity distribution of a second particle at the same or the opposite hemisphere of the
trigger particle by numerical integration of Eqgs (3.14) and (3.19). In these calculations
we use the jet fragmentation function given in Eq. (2.8). For the jet production cross
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section we use Eq. (2.6) with the same quark parton densities used for the example plotted
in Fig. 3. It is our aim to study the rapidity correlations between same side particles as
compared to opposite side particles. This rapidity correlation is mainly a result of the jet
fragmentation, in particular the transverse momentum distribution within the jet. There-
fore, for this purpose, we do not attach any special importance to the particular form
of the jet production cross section. In order to study the dynamics of jet production we
would need experimental data on the rapidity y and transverse momentum g, dependence
of the single particle distribution and the y and ¢, dependence of the opposite side distribu-
tions as well as quantum number correlations. In Fig. 5 we compare the rapidity distribu-

b0 de 9127 Quz=
1%}]57&'52 04 - 06 06 - 08
01 .
004
| \
2
=
D i i i 3 i 4 i i
2 -1 0 1 2 2 -1 0 1 2
oy
g 1-17
5 08-11 | [ M=t
w }
004 { 002
* |
002 0014
b }
2 -1 0 1 2 2 -1 0 1 2
Y2 Y2

Fig. 6. Same side two-particle distribution plotted as function of the rapidity of the second particle. The

trigger particle has the rapidity y; = 0 and transverse momentum ¢ ; ; = 2 GeVjc. The transverse momen-

tum of the second particle is in the bins indicated on the plots. The calculated curve is compared with
data from Ref. [12]

tion of the second particle at the same side or opposite side of the trigger particle. We
find this rapidity distribution at the same side rather narrow and centered around the
rapidity of the trigger particle. The width of the same side rapidity distribution decreases
with the transverse momentum of the second particle. Later on we shall find that the
shape of the same side distribution is mainly determined by the details of the jet fragmenta-
tion.

The opposite side rapidity distribution is rather wide and reflects mainly the details
of the jet production cross section. There is no experimental data available for the opposite
side distribution which could be used to study jet production dynamics. Data on the same
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side rapidity distribution was measured at the CERN-ISR [12]. In Fig. 6 we compare the
measured rapidity distributions for the second particle in different rapidity bins with the
calculated distributions and find rather good agreement in particular for the width of the
curves and their changes with changing transverse momentum of the second particle. It
has, however, to be taken into account that the width of the experimental curve is increas-
ed due to the finite angular acceptance of the lead glass detector for the trigger =°.

4.2. The correlation length in rapidity for two particles from the same

side jet

In order to understand the shape of the same side rapidity distribution and its change
with transverse momentum qualitatively, we calculate the same side two-particle distribu-
tion (3.14) analytically using approximations for jet production and fragmentation.

We use the jet production cross section (2.7) and the simplified jet fragmentation
into two particles

: : F+D* [ puutpa\ pLi+p]
G(P9p||19pJ_I)G(Ps Pnz,PJ_z)z R2b4 - HIP 12 €Xp{ — llsz (41)

in Eq. (3.14) and obtain

= d*e
2 Q_;_lq_l_zdyldyde_leq_LZ
vsiz 8,(2) 8,(2)
1
= dP do,, de ; :
J L J 4 J 7 cos (8, —0,,) cos (8, —0,,) sin 3, sin 9,
a4, ,*e,, F, (0 8,(1)

1 1 2DP,
X ———— —exp| — —=
sin 8,, sin 6,, P} P NE

sin 0, cos (8, —8,,) cos (3, — 0,0\
X <1— —})— qll +

: 9,2 ;
f sin 9 = sin 8,

1 sin (9, — 0,)\* sin (3, —0,)\?
- — e L 2 s ) 4.2
X exp ( b* {(q“ sin 94 ) gLz sin 8, “2)

We are interested in the behaviour for 8, ~ 3, ~ 90°. Because of the exponential
damping in the last term we can use integration limits 65D, 852, 651, 052’ independent
of P, and exchange the P, integration with the 0,, and 0, integration. Furthermore
we transform the P, integral to the variable

sin 0, cos (3; — 8, cos (3,—0,
_ J(“ (81=0) ® ,)) @3

x = : 4,2
P, sin 9 = sm 3,
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and obtain in good approximation after integration over 6,
d*c

jls =
q,19,24q4,1dq, ,dy,dy,

8442

1 1 1
~ der TN N—1 ... .
sin” 8, A sin 3, sin 9, cos (9, —8;,) cos (8,~0;.)

8,1

_ 61_11 Si_nz (81 -0,) gig sin (8,—0,,) o
b* sin? 9, b? sin® 9,
with

cos (8,46, + cos (8, —0y,)

A=4q,, 12

sin 3, sin 3,

The function ¢ is the x integral

2D sin 6,

1
A = de xN2 exp<—— — A) 1-x)F
x /s
V]
which can be approximated (see I) by

FI(N=2)! 2Dsin 0y,
N ————— X - .
F+N—1)1 P Js

“4.4)

(4.5)

(4.6)

%)

We want to find the shape of the rapidity distribution of particle 2 for the trigger particle
1 at fixed transverse momentum and fixed angle 8, = 90° and for a given fixed transverse

momentum ¢, , of the second particle. In this case we have
sing; =1,
sin (8; ~0,,) = cos O,
cos (3, —0;,) = sin O,

cos (8;—65,)

- = ctg 3, cos 0,,+sin O,
sin 9,

sin (8, —0,)

- = cos 0y, —ctg I, sin 0,,.
sin 3,

Furthermore we approximate

cos (9, —0,,) =~ sin 9, sin 8,,

(4.8)

4.9)
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2D sin 0,
Js
duction term which does not dominate the 3, dependence. We have

and neglect the exponential function exp <-— A) resulting from the jet pro-

7,

1 1
~ dé
F 2 _[ 7 (sin 6,)"*2 sin® 9,

8,00

x[q,sin0;,4q,,sin0;+4g, , cos Oy, cig 9,17
1 2 2 2 . 2
XexXp| — i3 (g7, cos® 0.+ g7 2{cos 0,,—sin 8,, ctg 9,}°) |. (4.10)

We transform the integration to dcos 0, = dz and keep only the exponential function.
This gives

2
z
Fas ~ jdz exp[- —by(qil +q12"'412 Ctg2 32)

2
z q
+2 P g’.ctg9,— —5*2—2 ctg? 92] . (4.11)

We have kept only terms up to z? in the exponent. Due to the large values of g ; (i = 1, 2)
and the small size of b we can extend the integration limits to infinity and obtain

ctg®? 3, g%, —q,ctg’ 8
Fas ~expl — gbz 2 q'“qzqu £ . (4.12)
1+ = —ctg? 9,
qi2

We transform Eq. (4.12) to c. m. s. rapidity variables. For small y, we have y, ~ ctg 3,.
We also neglect the two terms in curled brackets containing ctg? 3. We then have finally

2 2 2
~ exp [— v ﬂi‘qi]. 4.13)
1 %0

£, = d%c
2 b ‘111"“112

- qllqlzd‘ludqlzd}’ld,)’z

We thus find short range correlation between y, and y, with a correlation length

__If_ \/‘Iit‘f"i’,zu

— “4.14)
\/2 911932

L(q 11 q_LZ) =
This correlation length decreases with rising transverse momenta. Limiting values are

b
for 4,1 g2
L=V (4.15)

b
for q,,%» q44.
V24, s
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TABLE 1

Comparison of the transverse momentum dependent correlation length L(q +, ¢ | 2) according to Eq. (4.14)
with data from Ref. [12]. It is ¢, , = 2 GeV/e

Range of experimental
4.2 (GeVic) L(g11,912) Lexp GeVie) L
0.5 0.52 0.66 0.4 — 0.6
0.7 0.38 0.58 0.6 —0.8
0.9 0.31 0.50 0.8 — 1.1
12 0.24 0.33 1.1 - 17

This is just the behaviour found experimentally in the CERN-ISR [12]; see also Figs 5
and 6.

In the Table we compare the correlation lengths obtained from (4.14) with
b = 0.355 GeV/c with the correlation length which we have determined from the data.
We find that Eq. (4.14) reproduces well the trend of the data considering again that the
experimental y distribution is probably influenced by the finite acceptance of the trigger
particle 4y =~ 0.1.

4.3. Rapidity distribution of a second particle from the opposite side jet

The opposite side three-particle distribution considered in Section 3.4, Eq. (3.23),
refers to the cross section for a trigger particle 1 from the same side jet and two particles
from the opposite side jet. Darriulat et al. [12] found in their experiment some evidence for
the opposite side jet by selecting the fastest particle on the opposite side and plotting the
distribution of all other opposite side particles over their rapidity separation to the fastest
particle. At small rapidity separation to the fastest particle they found a maximum.

Our cross section (3.23) does not correspond exactly to the distribution measured
in this experiment; we do not integrate over the transverse momenta of the two opposite
side particles and we also have not included the low transverse momentum component.
In Fig. 7 we plot rapidity distributions of the second opposite side particle for fixed rapidi-
ties and transverse momenta of the trigger particle and the first opposite side particle.
In these distributions we find the same behaviour as in the experiment. In respect to their
short range correlation two opposite side particles behave similarly as two particles on the
same side, and the correlation length L(q, ,, g, ;) of two opposite side particles can be
derived from Eq. (3.23) similarly as in Section 4.2 for the same side particles with the same
result as there.

5. Swummary

In Section 2 we have calculated within a hard collision model the inclusive one-,
two-, and three-particle distribution at large transverse momenta taking into account
a general jet production function and jet fragmentation with deviation from scaling. The
transverse momentum of secondaries within the jet is treated properly. The formalism



197

OOOdgo

%S g T,

10°

L]
15

-9
10 m-
28 \\
10" R A . \

0 1 2 %

Fig. 7. Opposite side three-particle distribution (particle 1 is the trigger particle; particles 2 and 3 are in

the opposite hemisphere) plotted as function of the rapidity of particle 3. The trigger particle has rapidity

1 = Oand transverse momentum ¢ ; ; = 2 GeV/c. The particle 2 has transverse momentum g | , = 1.5 GeV/c

and rapidities a) y2 = 0, b) ¥ = 1, ¢) yo = 2. The transverse momenta of particle 3 are indicated on
the curves. Arbitrary units

could be used to study the influence of the jet production dynamics on rapidity and trans-
verse momentum distributions of particles. This is not done here and it seems that more
detailed experimental data — in particular regarding the rapidity dependence — would
be needed to do this. Using our formalism we study the influence of the transverse mo-
mentum dependence within the jet on rapidity correlations between two large transverse
momentum particles on the same hemisphere.

We acknowledge discussions with P. V. Landshoff and M. Holder. We thank Mr.
Thormann for help with the computer programmes.
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