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Calculations of the quasipotential within simple Lee-like models are performed using
the Krolikowski-Rzewuski equations for the distinguished component of a state-vector.
We consider the two-level quantum system, the one-dimensional Lee model and the usual
Lee model. In the last case a comparison of our results with those of Glaser and Killen
is made.

1. Introduction

In this paper we shall test the Krolikowski-Rzewuski equations for a distinguished
component of the state-vector of a quantum system by applying them to three simple
models {1]. All the considered models are similar in the sense that the distinguished
components of the state-vectors are in fact one-dimensional and this circumstance simplifies
the calculations [2]. Our aim is to find the quasipotentials governing the time evolution
of the considered components of state vectors, and to calculate corresponding decay
widths of those components describing unstable systems [3, 4} and [11-17]. In particular,
we are inetrested in the V-particle decay problem in the Lee model which was treated long
ago by Glaser and Kaillen using an entirely different approach [5]. Before doing this we
consider the one-dimensional Lee model case which may be reduced to a two-level quan-
tum system. The last case may be completely solved and studied in detail [6].

2. A system with two levels

Let us consider the simplest nontrivial system having two states only. Any state-
vector () € ¥ may be represented as a linear combination of two basic vectors

Y(t) = pi(t) er +pa(t) €3, 2.1)
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where ey, e, are orthogonal unit vectors which in the canonical base have the form [6]

(1 _ {0
ey = (0), e, = (1) 2.2)

and y,(t), v.(t) are complex functions. Thus the Hilbert space # splits into the ortho-
gonal sum of two one-dimensional subspaces directed along the vectors e, e,.

H o= K DH, He={le), k=12

We shall sellect the subspace 3, as the projecting subspace. The corresponding projector
P and its complement Q are

Pe, =¢,, Pe, =0,

P=(1 0), Q=1-—P=(00). 2.3)
00 01
Our task consists of finding the time evolution of the projection
() = Py(r) = yi(ey, 24)
if it is known that the vector u(r) evolves according to the Schrddinger equation
i dzs(tt) = Hy(1), 2.5)

where H is a Hermitean matrix

Hy, le) <H11 0 ) (0 le)
H = = + = H,+H,. 2.6
(Hu H,,)~\o Hy) T\m,, o0 ot (2:6)

Assuming that y(fo) € #°; we will get an equation for y(?) [1]

[>¢]

(ig—t -PHP) (D) = —iJ- dtK(1—7)y (1), @7

to

where the relevant matrices in this case are

Hy, 0 (00 _(0H
pur=(g5). ono=(3,) rre=(g5).  ev

K(t) = O(t)PHQ exp [~ itQHQ|QHP

_ (g(:) |H 5] exp (—itH ) g) = K,()P. 2.9)

Projecting this equation onto e, we obtain

o«

d
(,- e H“) i) = —i f diK (t— 1)y, (1), (2.10)

to



where, for brevity, we write
Ky(t) = @(1)|H,,? exp (=it H,)).

Using the retarded solution of the equation

(i% —H“) G,(t) = &(1), G,()=0 for t<O

G(1) = —i@(t) exp (—itHyy),

we may write for the function v,(zr)

pu()) = ¢, ()i j dt tS dv'G,(t— 1)K, (t' =)y, (2),

to

where ¢@,(¢) is a solution of the free equation

d N it
(i:{t —Hu) ei() =0, @,(1) = @(t)e =8

The internal integration over t* may be done and we get the expression
o o
[ dT'G(1—1)K (7' —1) = [ dT'G(1—1—1)K (7)
to (4]

[H,,)?

=G, *K,(t—-1) = O@~17) ————
v+ Kylt=1) = O(1=9) p M

We infer from it that the solution y,(¢) satisfies the initial condition

p1(to) = @1(t0).

Iterating the integral equation

nilt) = %(t)—ijf deLy (1= (0),

we find easily, assuming that the modulus of L, does not exceed unity

pi() = {[ dr| Sjo (=i)"Ly* ... % Li(t—1)]@,(v)

= T di1+iL) " =),

= [ dt(1+iL,) " (t—1)e " 1g (1)
ta

[e«-x‘(t—r)h'“__e—i(t—t)Hn] — Ll(t‘“"r).
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Now, introducing the resolvent kernel by means of the equation

(I+iL )y Y r—1) = (1—iR) (t—1) = d(t—1)~iR,(1—7), 2.22)
we shall find
pi(0) = [1—i | diR,(1—1)e“ " ] (1), (2.23)
to
where according to the expansion (2.19) we have
Ri(t—1)=1i Y (—)'Ly*...xLy(t—1) = (1+iL;)™" = L, (t—1). (2.24)
n=1 R e

n

An explicit expression for R, may be easily found by means of the one side Laplace trans-
form and its inverse. We obtain in this way the formula

H 12
R(t) = —iO(2) L——‘?-/’l— (¢ — ), (2.25)
17— A2

where the complex numbers A, 4, are

i i :
Az = = 5 (HitHok - VH G~ Hy +4H [ (226)
Introducing the notation
Ay, t5) = [dTR(t—1)e't TOH
to

[H,,|? et oMty plmto)(Qatilli) _ g

= —i - for t>t 2.27
Ai—4, [ Ay+iH 2;+iH,, ] o @2

we will get for the function y,(¢) the formula

pi(t) = [1—idy(t, to)] (1) (2.28)
The function 4,(t, t,) vanishes for 7 = 1, and depends on these variables only via the
difference 7—1,.
A purely differential equation for the wave function y,(?) follows from the last for-
mula

d Ayt 1)
i——Hy— — "=
dt 1—iA,(1, t)

] pi() =0 (2.29)
valid for t > t,. The last term in brackets determines what is called the quasipotential
V1, to) [1, 2] where for the derivative A, (z, t,) we have from (2.27) at ¢ > ¢,

—ilH |
11"“),2

i

All(t, fo) [e(f*lo) (Ar+illiy) _ r=to) (lz+!'sz)] (2.30)

I

R (t—tg)e 1811, (2.31)
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Therefore, we get for the quasipotential

Ai(t,10)  _ Ry(1—1)e T
1—id(t, 1) 1—id,(t, 1)

Vi(t, to) = 232

The same quantity may be found also from the formulae (cf. e. g. [1] formula (2.17) and
[2] formulae (13)-(15))

Vi(t, to) [1—ids(t, to)] = —i | diK, * (1—iR,) (t—1)e'¢~Hu (2.33)
to

~i [ diK (t—1)e O [ 1—iA,(z, 1p)]. (2.34)
to

They are useful in performing the limiting procedure when ¢, — — co. Namely, we have
in this limit the following basic formulae

Vl = lim Vl(t’ to) (2.35)
to~*—
. AT
=1 e e 2.36
rl-I»T:o 1—id(T) ( )
. Ry(T)eTHu
= lim ———— 2.37
. 1—id(z, ¢t
— —i lim f &K (t—gyele-oms 17 1) (2.38)
g — l_lAl(t’ tO)

to

| diK,* A—iR)) ()"
S N . (2.39)
1—i | diR,(z)e™
0

The wave function y,(¢) satisfies the conditions in this limit

d
(i 7 —H - V1) (1) = 0, (2.40)
'liirl [vi(D—9(0] = 0. (2.41)

The last condition, which replaces the initial condition (2.17) tells us that the quasipoten-
tial ¥, should be switched off at minus infinity (adiabatic hypothesis). The easiest way to
get the quasipotential ¥, in the quadratic approximation is to drop the functions 4 in
formula (2.38) when the above conditions are fulfilled

QH,Q = PH,Q = QH,P = 0. (2.42)
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We obtain in this way

«©

) H
V, = —i | diK,(0)e" H O L o(1H %) = _ Hol +0(|H,1%). 2.43
1 f () (f 1217) H, —H,,+ic ({H,!™) ( )

¥2

0

Solving equation (2.40) with this quasipotential one finds
12

p(f) = 9,(0) exp {—fz (Huw’ 11z

2 ) —n|H,,%8H,,—H . 2.44
Hu—sz) nlH,,{"0(H,, 22)+ } ( )

The decay is absent when energies of both states are different.
In general, the denominators in the formulae (2.36)-(2.38) should be elliminated, by
expansion in the geometric series, before the limit t — oo is taken.

3. The one-dimensional Lee-like model

The next simple model we shall consider by the same method is offered by the Lee-like
Hamiltonian describing an interaction of the fermions V and N interacting with @-bosons.
We shall assume that the relevant operators (creation and destruction) do not depend
upon the space variables so the particles do not move and are located at the origin. The
Hamiltonian of the system reads

H=H0+H1, (3.1)
where
Ho = myV V4+myN*N+mg@™ 0, 3.2)
and
H, = g(V*NO+N+0+V). (3.3)

The nontrivial commutation relations are
[0,07] = {V, V+} = {N,N*} = |,
[V,0] =[N,0] ={V,N} =0. (34

We construct the Hilbert space of states in the standard way. Let |0> be a normalized
state — a vacuum — defined as usually

V0> = N|0> = ©]0) = 0. (3.5)

It is clear that it is also an eigenstate for the total Hamiltonian to the zero eigenvalue,
so it is a physical vacuum. The following ‘‘charges” are conserved in the model

0, = V+V+N+N, (3.6)
0, = VtV+0+0, 3.7
(@1, H] = [Q,, H] = [Q4, Q2] = 0. (3.8)

]
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Hence, the Hilbert space of states may be decomposed into the direct sum of sectors
having definite values of Q, and Q,

2

¢1=0 =0
where #(q,, q,) consists of vectors of the form

min (1,41}

H(qy,42)3 14y, 425 ) = > wp, 41— p. 92— p)

p=max (0,41~ 1)

. = — (VN HO ) 770). (3.10)
Vg, —pig,—p)!

G S ————

The first nontrivial sector is #(1,1) sector to which we shall confine our attention in what
follows. A typical element from this sector is

H(L, 1) = Hv@H e 2 ¥y, Yne)
=P VT + N OY0) = PylV D+ Yol NOD. (3.11)

We are interested in the time evolution of the V-particle state ¥*+]0>. Therefore, we introduce
the projector P acting in the sector J#(1,1) as follows

P={Vy{V|=V0><0|V, Q = 1-P, (3.12)
Plyy, vyey = vy, 0> = yy, (3.13)
Qyys vve> = [0, Yne) = ¥ (3.14)
One easily finds, using the above definitions, that the operator K(r) is given by
K(1) = 6()g* exp [—it(my+mg)]P = K(1) - P. (3.15)

So the equation for the wave function y, takes on the form

0

<i§~t ——nzy) py(t) = ~i JdTKV(t—f)WV(T)- (3.16)

1o
Comparing the functions K\(¢)and K,(t) of the previous section one sees that they coincide
upon the following identifications

g2 = ?Hllizy ’nN+'n9 = H225 my == Hll' (3'17)

Hence, it is possible to use the result (2.43), for the quasipotential in the second order
approximation

2

Vy = 8K +0(gY) = — — +0(g*)
My — Ny — Mg+ ic

gZ

=P
My —My— Mg

—ig*nd(my, — my— mg)+0(g*). (3.18)
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It may be verified, using the asymptotic formulae [10]

i t 1
lim o _ s, lim X~ g, (3.19)

too X t+o X

that the V¢ correction to the quasipotential is simply

Vi = ! (3.20)
v (my—my—mg+ie)® )
o* 1
12, [g» ;- in&(é)] o (3.21)

After the above preparations we are in a position to discuss the usual Lee model which
provides a more physical picture of a decay phenomenon.

4. The Lee model

This model describes two spinor particles ¥ and N interacting through spinless boson
O-particles according to the Hamiltonian [7-9]

H = H,+H,, “4.1)
where
Ho = my [ &®pV T (pIV(P)+my § d*pNTBIN(p)+ [ d*kaxk)a* (k)a(k) 4.2)

and

A f o fle(k)]

= (27'[)3/2 =

&PV (P)N(P—-k)alk)+h.c.]. 4.3)
V20

H,

Spinor particles ¥ and N are static while the @-particles, associated with the a*, a operators,
are relativistic one with energies

w®) = VB2 + 12, (4.4)

The real cut-off function f] [w(ic’)} and the coupling constant A together with bare masses
my, my and p are parameters of the model. The nontrivial commutation relations are

la(k), a+(k)] = d(k—k'),
{N(p), N*(p))} = 6(p— D),
V(p), V<)) = 8(p—p')

{N®), V()} =0. 4.5)
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Similarly as in the one-dimensional Lee model considered before we are interested in the
sector s (1,1) formed by the vectors

vvs Yred> = | CDve(BV (D) 0>
+ § d*pd*qyne(p, DN ()a* (@) 10> = lyy, 05 +10, ye), (4.6)

where v,(p) and yye(p, g) are both square integrable with respect to p and p, g respectively,
which are complex functions depending on time. This sector is determined by the conserved

charges Q,, 0,
0, = ny+ny, @.7
Qz = ;'ie'i';ly, (4.8)

where n, is the V-particle number operator, ng is the @-particle number operator, and so on.
Both charges have the value 1 on the vectors (4.6) from the sector 5#°(1.1). One sees from
the formula (4.6) that this sector splits into the orthogonal sum of two subspaces

H(,1) = Hy®Hye, 4.9

with both parts having the obvious meaning. Therefore, it is reasonable to select the sub-
space 'y as the projecting subspace when treating the V-particle decay problem. Hence,
we define the projector P in the following way

Plyy, yye? = vy, 0, (4.10)
Qivw, ¥no> = (1= P) [y, Yye> = |0, Yne>- (4.11)
The kernel K(¢) (for the definition see (2.9)) may be found rather easily and reads
K@) = 0(1) | Qe " +e@Ip = K (1) - P, (4.12)
where the measure dQ(I_é) is given by the formula

Azszqu?)] L
2n)° 2w(k)

dQ(k) = (4.13)

Therefore, the problem is quite similar, in principle, to those considered before. New
complications in comparison with previously considered cases come from integration
over the momenta. We get the following integro-differential equation for the wave function
’/’v(ts I;)

®

(i 5} —mv> p(t,p) = —i fdrKV(t—t)'wV(t, p). (4.14)

to
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Having K, (t) we may calculate the quasipotential ¥, in the second order of approximation
in the coupling constant 4

Wy

—i | dtK (D)™™ O 1 0(4*Y)
1]

J A) +0(3*)

my —my— (k) + i

~ Re Vy — 5’ r,. (4.15)

-

For the decay parameter I, we get after performing the integration over k
A2 e
Iy = 2—~f2(o)0)6)(w0— WVOE— 240G,  wy = my—my. (4.16)
™

This result coincides, in the approximation considered, with that derived by Glaser and
Kalen using different methods (cf. [5] formulae (13a) and (27a)).

In a future paper we are going to undertake the investigation of radiation damping
in atomic systems using the methods described here.
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