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It is possible to fit the single particle inclusive spectrum by a suitable temperature
distribution. We discuss the resulting two-particle spectrum in this model and show that it
contains the observed correlations.

1. Introduction

Large py inclusive data are generally thought of in terms of hard q—q scattering
processes and detailed models are available to fit the rapidly accumulating amount of data.
Nevertheless there is still interest in the older and simpler statistical models. Justification
for this continued interest would include the following points:

(/) they describe many of the general features of inclusive processes, particularly at
small py, in a simple way.

(ii) there is evidence that large p; and small p; processes are not really different and
that the same model should describe both — certainly there must be a smooth j Jommg
between “latge” and “small” p..

(iii) it is important to know what features of the data can be described by purely statistical
arguments, together with momentum conservation, and what features require detailed
dynamics.

On the other hand we know that statistical models have many serious inadequacies:
(a) they ignore momentum conservation,

(b) they fail completely in the longitudinal direction,

(c) a single temperature distribution gives too small a cross-section for large pr.

In this work we consider the ‘“‘multi-temperature” distributions which have been
proposed by several authors, e.g. Benecke et al. [I, 2] Gorenstein et al. [3], to solve
problem (c). Since, as explained below, any do/dp; can be fitted by a suitable temperature
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distribution, such a fit is not significant unless either the parameters can be related to other
theoretical ideas (as, for example, in Ref. [4]) or other predictions can be made [2]. We
shall concern ourselves here with what can be said about the correlations. The single
particle distribution depends on the product of the cross-section at a given temperature
and the multiplicity at a given temperature, whereas in the two-particle distribution we
require the product of the cross-section and the square of the multiplicity. The single
particle distribution does not therefore determine the two particle distribution but, as we
shall see, it provides constraints which can in principle be tested experimentally.

In the next section we define the measured quantities and express them in terms of
temperature dependent cross-sections and multiplicities, thereby obtaining some general
predictions of the model. Section 3 is devoted to a discussion of the correlations in the
model of Froyland [4]. In Section 4 we show how the two particle distribution can be
related directly to the single particle distribution if we take a simple form for the multi-
plicity. In fact a multiplicity which is independent of temperature gives an adequate fit
to the available data. The last section summarises the conclusions.

2. The model
The one-pion inclusive crosss-section is defined by
d’c d’c 1 d%

flp)=E-——= - = - — . Q.1
T dp® ~ pydprdpdy ~ 2n prdpydy

We shall work at y = 0 and will ignore the y-variable. We shall denote p; simply by p.
The assumption that f(p) is a sum of fixed temperature distributions is expressed by writing

fp) = ? dho(A)g:(p), 2.2)

where

gip) = a(De . (2.3)

Here 1 is the inverse temperature and o(4) is the cross-section for producing a tempera-
ture A~1, We have ignored the pion mass which makes no difference except for very small p.
The multiplicity at fixed 2 is given by

o

a(4)
n(d) = jpdpgz(p) =7 (24)
]
and the total inelastic cross-section by
¢ = | o()dA. .5)

]

Note that (2.4) requires a(d) = O(A?) for small i; if a(2)/42 is constant we have a multi-
plicity independent of temperature.
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From (2.2) and (2.4) we have

f(p) = ? dio(a(Re ", 2.6)

i.e. f(p) is the Laplace transform of the product a(1)a(1). Given any experimental f{p) we
can determine the product o(A)a(4) from (2.6). In general all these quantities will be energy
dependent, but we shall work at fixed energy and make no attempt to parameterise the
energy dependence.

The two-pion inclusive cross-section is defined by

de
(pidp;d$,dy,) (p2dp,de,dy,) ’

We shall always consider 1 and 2 to have different charges. At a given value of A we assume
there are no correlations (this is essentially the content of (2.3)), so

f(py p2) = 2.7

b1, p2) = T oD pf(ps) = ? doa(Ra(iyte= P+, 2.38)

i.e. f(p1,p2) is the Laplace transform of a(d)a(d)>.
Some constraints on f(p,, p;) follow immediately. First, we note that it is independent
of the azimuthal directions of pions 1 and 2. This is to be expected in a model which
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Fig. 1. Showing Zx(p) the ratio between the conditional inclusive cross-section and the inchisive cross-

-section. A value of unity means that there in no correlation effect. The lower limit of the shaded region is

the experimental value on the same side and the upper limit is the experimental value on the opposite side.

The dashed curve is the prediction of the Froyland model and the curves labelled by values of n are the
predictions of the model of Section 4
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ignores momentum conservation. Experimentally, this prediction is not verified bat
is probably a reasonable “first order™ statement (see figure). Whether significantly better
agreement can be obtained by introducing momentum-recoil is at present being investigated
(the effect certainly goes in the right direction).

Secondly, we see that f(p,, p,) is a function of (p, +p,) only. We are not aware of
any data which might enable this to be tested.

Finally, it is clear that (2.8) implies generally positive correlation. To see this we
define

inel
Z(py, p2) = {(}’i; ;’;?)5;)- (2.9)
1
T dio(A)a(R)Pe ot r2) oj? dis(A)
=2 - . (2.10)

cj? dlo(A)a(A)e *" T dlo(A)a(A)e” 7
0 0

Since o(4) and a(l) are positive definite, this quantity is greater than or equal to unity
for p; = p,. Thus we expect positive correlations at least over some range in the neigh-
bourhood of p; = p,. These correlations are due to the fact that more than one value of 4
is contributing. If we replace o(1) by ¢ §(1—-4,), then we obtain Z = 1.

The experiments actually measure a somewhat different qunatity in which the trigger
is not a particle of fixed momentum p,, but rather one of momentum p, > A. Thus we
define

§ pAp,dy,de,f(p, pr)a™™

Z(p) = 22! ) 2.11
K = o ey dd o o) @1

p2>h

Again, at least for p~ h, we expect Z > 1.
The experimental values of Z,(p), with A = 2 GeV/c and with p in the same (opposite)

hemisphere, are given by Biisser [S] et al. In their notation
F(h)

Z(p) = .
KP) = Ffully inclusive)

(2.12)

The experimental results are shown in the figure. As we piedict, Z,(p) is greater than 1.
We now turn to more specific models to see if quantitative agreement is possible.

3. Froylands’ model

Froyland [4] assumes that the inverse temperature is a linear function of the impact
parameter and, since the cross-section as a function of impact parameter is known from
analysis of the elastic differential cross-section [6], is able to obtain a unique form for
o(A) and a(4) by fitting the inclusive distribution. He obtains

= b+10.1s~ 174, (3.1)
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where b is the impact parameter in (GeV/c)™!, and
a(l) = 0.56 n—1b2. 3.2)
The cross-section is given by Henzi and Valin [6] as
o(1) = 21b(0.95)8(b)e™ /4B, (3.3)

with B given as a function of s in figure 2 of Ref. [6].

Some physical justification for the particular form of a(4) is given in Froyland’s paper,
where it is shown that the quoted parameters give a good fit to the single particle inclusive
data at all p.

We have evaluated the resulting expression for Z,(p) at /s = 52.7 GeV and
h = 3GeV/c. It is plotted as a dashed line in the figure and we see that the correlation effect
is too small to explain the observations. This probably rules out the linear identification
of A with impact parameter. Froyland (private communication) has made similar calculations
and has also made some attempt to include recoil.

4. General treatment

In this section we shall express f(p;, p.) and hence Z,(p) directly in terms of f(p)
and a particular parameterised form for a{). We begin by inverting (2.6)

+iw

1
o(Da(d) = — J f(p)e**dp, (4.1

—ico
where we have chosen the contour to go along the real axis. This will normally be possible
since o(A)a(2) tends to zero as A — oo,
Now consider f(p,, p.) given by (2.8) which we can write as

w© +ic0
Ay, p2) = J daa(A)e 4Pt P J‘ %f(q)e“’- 4.2)
4] =iw
For p, and p, positive we can reverse the order of integration to obtain
+iw
S(p1, p2) = J —-f(q) J-dla(l)e"“"“’"‘"- 4.3)
- {0

We choose to parameterise a(4) in the form

a(d) =Y a,A" (4.4)
Then,

+i

f(py p2) = j' f(q)>) . +p2 q),.“. (4.5)

-
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Closing the contour to the right yields
f(p1, p2) = ¥ (= 1)'a, fP(p1+p2) 4.6)

which gives a simple relation between f(p,, p,) and the n™ order derivatives /™ of the
single particle inclusive cross-section.
To evalnate Z,(p) we need also

:Io p2dp2f(p1s P2) = X an(—= 1" [Af T b+ p)~f "2 (h+py)] (4.7)

where we have extended the notation /™ to f~'(h) = — [ f(p)dp, etc. Then,
h

0! S a (= 1Y TR O+ )= "2+ )]
24P = o T < ] ' 8

Rather than evaluating this directly from the data we shall use the 3-parameter fit
to f(p) of Vanryckeghem [7]

f(p) = Ae™MF A, 4.9)
with
A = (186+69) - 10*s™1/> mb (GeV) ™32, (4.10)
k = [(16.5040.13)—(1.3740.04) log s'/*] GeV~*/2, 4.11)
and
v = (0.29 40.04) GeV. 4.12)
1
If we ignore terms which are O ———} compared to 1, we can approximate
k+/h
190 = (=) 1. @13
Then
. (p) _ a,inel Z . ( k )n ((h+P)2+v2>1/4
! A "2V h+pP+r/ \ B+
x ek["/h2+v1+ prrvi- ‘«/(h+p)2+vz]. (4-14)

We can simplify this still further if we try a fit involving only one non-zero value a,,.
Then the cross-section constraint (2.5) can easily be incorporated. First we use (2.6) and
(4.9) to write

Ae YRR T (a(De™ P dA (4.15)

o(A)a, e *dA (4.16)

OCtay § Oty 8
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with our assumption about a(4). We multiply this by p"~ ' and integrate over p from zero
to infinity, thereby obtaining

AJ Pl PR = g (n- 1)) j a(A)d2, (4.17)
0
or
a,o'™ 1 ¢ 1~k Wpriy2
n _ - n—1 - Pz“*"'zd X
’ — J‘” . p (4.18)
[¢]

This, inserted into (4.14) gives our final expression for Z,(p). It has one free parameter, n.
We have taken this to be an integer although the same expressions could probably be
obtained without this restriction. The integral in (4.18) is evaluated numerically unless n
is an even integer.

As an example we consider the case where n equals 2; i.e. we have a constant average
multiplicity (see (2.4)).

Then,
Z{p) = l: S+ _\/‘f 3v N k‘.3/2] _ )
¢ ke 2 2 N V) (e p)P +v)
% ek[‘\/h2+vz+4~/p2+v2_4‘/(h+p)2+vz_4y/v—2]‘

(4.19)

This is plotted in the figure. We see that it gives a reasonable fit to the data — assuming
that, since we have no recoil effect in our model, we should roughly “average™ the
same/opposite side correlation.

To see the difference made by changing the form of a(4) we have also calculated (4.14)
with other values of n. The results are shown in the figure. We anticipate that a suitable
form for a(4) could be found such that the predicted Z,(p) lies in the required range for
all p. However more detailed fits are not significant until we have studied recoil effects.
The very small p region could cause problems but the data suggests there are experimental
uncertainties.

5. Conclusions

Any attempt to describe in detail the available correlation data must take account
of recoil and also discuss the longitudinal distribution. Since our mode! does not include
these effects we must be content with a very crude comparison with data. With this proviso
it is clear from the figure that the multitemperature model with an approximately constant
multiplicity as a function of temperature can describe both the single-particle and the
two-particle inclusive distributions as functions of py. On the other hand the two-particle
distribution does not appear to be compatible with the existence of a linear relation between
inverse temperature and impact parameter as in the model of Froyland [4].
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Since the model effectively predicts the conditional inclusive spectrum, for pr in the
range 0.5 to 3.0 GeV/e, from the fully inclusive spectrum for pp > 3.0 GeV/c (this is
particularly clear in Eq. (4.6)), it suggests that there is a common mechanism for the
whole pp range. The success of our prediction would seem to be accidental in parton-type
models.

Finally we note that models of the type considered here automatically yield the
universal dependence on mass and py of produced particles, through the combination

(p3+m?), which has been proposed by Michael [8] and appears to be supported by the
data.

Note added in proof: This point is further discussed by Safari and Squires, J. Phys. G 3,
L45 (1977).

REFERENCES

[1] J. Benecke, A. Biatas, E. H. de Groot, Phys. Lett 57B, 447 (1975).

[2] J. Benecke, A. Bialas, S. Pokorski, Forward-Backward Correlations und the Multiplicity Distribution
in High Energy Collisions, Max-Planck-Institut preprint, 1976.

[3] M. L. Gorenstein, V. P. Shelest, G. M. Zinovjev, Phys. Lett. 60B, 283 (1976).

[4] J. Froyland, A Connection Between the Inelastic Overlap Function and Inclusive Pion Production at
ISR Energies, Oslo preprint 1975.

[5] F. W. Bisser et al., A Study of Inclusive Spectra and Two Particle Correlations at Large Transverse
Momentum, CERN preprint, 1976.

[6] R. Henzi, P. Valin, Phys. Lett. 48B, 119 (1974).

[71 L. G. F. Vanryckeghem, A New Parametrisation for Single Particle Inclusive Distributions, Liver-
pool preprint, 1976.

[8]1 C. Michael, Phys. Lett. 63B, 301 (1976).



