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SINGLE VARIABLE DESCRIPTION IN A GENERALIZED
WEIZSACKER WILLIAMS METHOD

By J. KUnAN

Max-Planck-Institut fiir Physik und Astrophysik, Munich*
{ Received November 3, 1976)

A generalization of the Weizsidcker Williams method for massive fields with arbitrary
tensor structure is considered. The resulting distribution of “equivalent quanta” has a partic-
ularly simple form, which is related to the field’s energy momentum tensor in the rest frame.

1. Introduction

One of the earliest models for multiparticle production in hadronic reactions was
constructed in analogy to electromagnetic bremsstrahlung by Heisenberg [1] and sub-
sequently elaborated by a number of authors [2, 3]. The essential experimental ingredient
in these considerations is the large number of produced particles in high energy collision.
This allows a classical treatment of the relevant fields. Only in a final step the distribution

of the field energy with respect to wave vectors is identified with the inclusive particle
distribution

dE dN
E- T )

In a recent paper [4] Bialas and Stodolsky argued, that the distribution of “equivalent
quanta” for the field of a fast moving rotation invariant system (calculated similar to

the distribution of “‘equivalent photons” in the Weizsdcker Williams method [5]) should
be of the form

dN -
©—5 = f(k**), where k* =k,, Kk} =kafy
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and y is an “effective” Vi — p? for the incident projectile’. Such a form was suggestive,
because the distribution of a fast moving field, which is rotation symmetric in the rest
frame, is of the form f(Xi+?3X§) and the Fourier transform depends on (kf_-{—k;/yz)
only. Therefore one might expect a corresponding variable dependence of the energy
distribution.

In a generalization of the method of Weizsdcker and Williams to arbitrary fields
we shall calculate the energy distribution in the modes of an “equivalent” free field, whose
energy density is that of the moving static system of interacting fields. In part 2 we shall
give the arguments in detail for the scalar field — in part 3 the method will be generalized
to arbitrary fields.

For free fields the energy momentum tensor 7,(X) is bilinear and a sum of terms
of the form?

130 4, (X)A,(X).
The energy distribution in modes is given through the corresponding sum
dE -3,a FINA—T
TR (2n)" "ty A, (kK)Ag (k) +h.c. )
4
where
‘T ¥ T kX +0,
Az (k) = dXeT" —— 4 (X).
2iw
X5=0

In the “generalized Weizsdcker Williams method™ we calculate the energy distribution
of an interacting field as it if were a free field, i.e. we use Eqs (2) also for the interacting
field. We shall show, that the result is related in a simple manner to the energy momentum
tensor in the rest frame. Furthermore from rotation invariance in the rest frame we find

% = [ik**)+ I3 L) + K3 (k) ©)
leading to a corresponding distribution for the “equivalent quanta”.

The argument is solely based on transformation properties of the energy momentum
tensor and rotation invariance in the rest frame, but independent of the Lorentz structure
of the field. We will conclude with some remarks on the non uniqueness of the relation
between the energy distribution in momentum and configuration space, and comment
on the impact parameter density of the flux of “equivalent quanta” and the relation of
this picture to the usual bremsstrahlung calculation.

! 4, may denote fields and derivatives of fields with arbitrary Lorentz structure. a, § are Lorentz
multi indices &y, ... @,; B1, ... fm; (encluding possible derivatives), with 1 and marbitrary. t,y,g is a constant
Lorentztensor, like g,v80102* -+ £8n. iy Ko = @ = V'm?+ k2 where m is the mass of the free fields under
considerations.

2 k% plays the role of XFeynman = k3/yM, where M is the mass of the projectile.



2. The scalar case

To illustrate our latter arguments, we restate some standard calculations for the
classical scalar field with an external source. We first calculate the density of modes (which
transforms into particle density in the quantized form) directly and then through the
corresponding energy density. The latter procedure will easily be generalized in Section 3
to the case of arbitrary fields.

Consider the (classical or quantum) field A4, coupled to a static classical source

(G+mHA = j.
We then define an “‘equivalent” free field through?®

—

A%x) = J d»'<D"— 3L )
X) = y (-\ ,\') Y ’4(,‘) .
C‘ .0
y0=0

Apparently A°(x) and 4(x) coincide for x, = 0 together with their first time derivatives.
Since the field A is static in its rest frame, it depends on the coordinates through X, and
(X3 —pr) only

A(X) = AXX 1, 9(X 3= BO)-

We decompose the field 4° into modes* according to

A%X) = 2r) 7 [ dR(AT ()™ + A7 (e ™), (4a)
where
e e
AT k) = ‘ dXe*™¥ :VC—“ A%X) (4b)
J 2iw
Xo=0

and we get for the density of modes

dN B .o _ 1 /w+pk 2_~ "
= (2m) 7 *Qw)A (k)4 (k) = (2r) 3(2(0)7<*~3> 1ARKk*)12, S
P\ 2w
where
ANK) = fd)?eizfAR(j().

The corresponding energy distribution for - 1

dN 2y R/ w2
0= (2m) 2263 AN K P0(K) ©

shows Feynman scaling, but it does not lead to a rising multiplicity

fdN ~—5> const. @)

3 It is easy to see, that for 8 — 1 the resulting Eqs (5) and (6) are independent of the choice of the
spacelike hyperplane over which we are integrating.

(s

— a‘
20

“In the notation of Bogoliubov and Shirkov A* = \/
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This is in contrast to the case of a vector field (cf. Eq. (18)). The result can be phrased by
saying, that for a scalar source the equivalent quanta are moving together with the source
or — speaking classically — that the energy density for the small wave vectors is negligible.

Instead of calculating the mode density, we could have calculated directly the energy
density. For the free real scalar field 4 the energy momentum tensor in configuration
space is given by

T, (X) = 8,A40,A+} g,(—0,A0°A+m’ 4?). (8)
The energy distribution with respect to wave vectors k is then®
dE =3 A+ INA— (L TN AT 2 A INA (L
P (2r) (A o(k)Ao(k) +3 goo(— A ()4 (k) +m AT (k)A"(k)))+h.c.  (%a)
where Ai(lz) is given through Eq. (4b) and similar
Y
Ax() = J dXe*"‘X—'z-",—oauA(X). (9b)
iw

Xo=0
The main assumption now is, that we can calculate the energy density of the interacting
field, as if it were a free field: We use Eq. (4b) and (9b) to calculate 4* and A4* despite the
fact, that the field 4 is no longer a free field.

We now want to express the fields in the boosted® frame 4 (and the derivatives 4 ,)
by the corresponding fields in the rest frame 4" (and 4%)

A(X)E!=O = AR(X_Q_a ?X3)>

AT(R) > ANERNOKY), AL = 1AL A (*)0(K3). (10)
from Eq. (9) we get
dE 2 N v — 3y AR¥ ey R Tk
TE 1/72 A" A" 1) " {47 (k*) A (K*)

+1 g (— AXEH A ER) + m* A+ AN0ED) +hee.
1/y* Ao Ag" Ti(k*)0(K3) (1

in an obvious notation.

I

5 Edq. (9) and the later Eq. (14) can be verified by calculating (with box normalisation) the contribution
of one mode
e (A% oKX o A5 oKX
A(X) = (A5eX + Az e- X))V
to the energy:

Eg = [dX Too(Az(X) = V(A2 Aoz + ...,
using .
VY3 - (202 jdk.

§ A,y denotes the Lorentz transformation, which connects the rest frame of the static field with
the rest frame of the observer.
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Therefore

dE - - . .
e = [T§0(k*)+ T (k*) + Tao(k*) + T;s(k*)]g(k*;)-

Since
Tgo = (27f)_3 * 2% {i/ﬂ‘o]2+% goo(-n)},
N
=0

T = (2n) 7% = 2« {1/1?312'*% g33(-. )} Tos = Ty = 0,
N —

— k:ZIA'Rll

we get the same result as Eq. (6) — as expected.

3. Arbitrary fields

The above line of argument can easily be generalized to the case of arbitrary fields:
let us consider a set of interacting fields A4,(X), where a denotes some multi Lorentz
index, (4, may also be the derivative of the field). A4, is assumed to be of the form

AdX) = A AUX [ 9(X 5~ B1)) (12)

where A% the interacting field in the rest frame, is rotation invariant and time independent.
B is close to 1. A% = A, %% .. % A, "

an

We then assume, that the energy density in a mode K can be calculated, as if A, were a free
field. For a free field the energy momentum tensor T, is a sum of terms of the form

fav P A(X)A4(X)

and the energy density in modes is given through the corresponding sum
dE 3 .
i 5 2m 71,45 () Az () +h.e. (13)
t
A% is defined trough

- W o [ +0
AXk) = j dXeF*X (;-") A(X).
tw
Xg=0

Analogous to the case of the scalar field we conclude, that the energy distribution

in modes is given by

E 24 g VPR Tk *
= Ly? Aot Ao  Tik*)0(K3)
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where
TR(E*) = ¥ (2n) 731, P AN (k) AX(K*) +h.c.
t
and therefore

dE R (7% R /7 % R (7 R (7 *
Ik = [Toolk®) + Tos(k*) + T50(k*) + T53(k*)]0(k3). (15)

We only have to verify
tin A Ay = AF A 1,

which is obvious, since t is Lorentz tensor and independent of X. From rotation invar-
iance in the rest frame we conclude, that

Teo(k) = /i), Tos+Tho = kafoa(kD), TSy = f5(KD)+K3fu(k), (16)
which proves Eq. (2).

4. Examples and remarks

For convenience of the reader we list some examples of fields, which are coupled to
static external sources
1) Scalar field

(O+mH4A" = j,
A% = J(K* +m?),
To(X) = A4, 4} gu(— A A"+ m*A%).
The energy density for the field of a fast moving source according to Eq. 6 is
dE —3n k2 TR2 2021 TDEN 200 1 F
o = M) 2k m) |J (*)70(k3).
2) Massive vector field
(O+m)Uy =j,, U, =0,
joX) = jX), i = 0,
Us =jl*+m», UF =0, an
T, = —H,Hi+m?U,U,+% g,(3 HH? —m*U, U,
H, =0,U,-3,U,

The energy density for the field of a fast moving source according to Eq. (15) is

% = (2m)22m? + k)J(R*? +m?)?) JE*)P00kS). (18)
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This form of the inclusive distribution is non zero for K — 0 and leads to a logarithmi-
cally rising multiplicity in contrast to the case of the scalar field

fdN ~ In 7.

3) For m — 0, one gets the “equivalent photons™ calculated by Weizsacker and Williams.
This is made more explicit by calculating the distribution with respect to the impact para-
meter

” 2
df = ?.,f(zn)i 0 US(CX | = b, Xy)e ™ X,
dkyd*X | ' ] + +

= 1/nk3*K3(bkY) = 1)(nb?)

for a pointlike source.

5. Remarks

1) In calculating the energy distribution through formula (15), we notice that the
only difference between scalar and vector fields lies in their opposite sign of T,;. This
difference (corresponding to attractive/repulsive forces in the scalar/ vector case) leads to
the different forms of dEjdk. It is interesting that a system of charges which are coupled
with equal strength to a scalar and vector field simultaneously, has no self stress (T, = 0)
and leads to dE/dk = f(k*?).

2) Eq. (15) and (1) show clearly the connection between the field’s part of the energy
momentum tensor and the inclusive particle distribution. In particular one might conclude
from the lack of seifstress and momentum flow for a system of fields — t.e. Tf}()?) =0
and TS,.(X') = 0 — that T,-’}(j}’) = 0 and Tg,-(l?) = 0 and therefore dE/dk = Té‘o(lz) = f(k*?).
This is the case in simple examples but not generally true. The reason is that there is no
uniqueness relation between the absolute square of a function and the absolute square of
its Fourier transform?.

3) As mentioned in the introduction, a necessary condition for the applicability of
Egq. (1) is high-particle number in the problem under consideration. This is always satisfied
for small k% and large y in the vector case, but doubtfull for scalar fields.

If we calculate the energy density as a function of the impact parameter® for scalar (S)
and vector (V) Yukawa fields (m # 0), we get for small k; and large b - m

dEy oc ce”**dk,d*b,

dE oc k3?e™?"™dlk,d?b.

7 Note, that TR(X) and TR(%) are bilinear in the fields and the Fourier transformed fields respectively.
8 To get dE/dksd*b, we again have to use Eq. (13), but without Fourier transformation of the fields
with respect to X .
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Hence we have for fixed b a (no) plateau in the vector (scalar) case, leading to rising (cons-
tant) multiplicity — multiplied by e~ 2™ in both cases

dNy oc In ye™2*"d?p,
ANgoc e~ 2"d%b,

In the scalar case the increasing available field energy — as we boost the source — goes
solely into the kinetic energy of the equivalent quanta, whereas in the vector case a small
fraction is used to increase the number of particies.
The quasi classical picture applies only up to those impact parameters where the
particle density is high enough, such that the fluctuations are small. If we require that
the number of quanta in a region of the size of their Compton wave length should be larger
than one:
dn  _,
—om T2,
d°h

then b,,,, rises only in the first case: b,,, ~ Inlny.

A logarithmically rising cross section (as predicted by Heisenberg) can in this type
of picture only be achieved, if the multiplicity rises like y* (¢ > 0). This was in fact a feature
of the “nonlinear strong coupling model” of Heisenberg.

4) The distributions (6) and (7) of equivalent quanta are identical (up to the 8-function)
to the inclusive distribution of real quanta, which are radiated from a source which is
moving with velocity f~ 1 for t < 0 and —f for r > 0.

5) With respect to the applicability of Eq. (2) to present data, we refer to Biatas and
Stodolsky [4].

The author is grateful to L. Stodolsky for suggesting this problem, for a number
of helpfull and stimulating discussions and for critical 1eading the manuscript. He also
thanks T. Jaroszewicz for useful discussions.
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