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REACTIONS FROM RAPIDITY CORRELATIONS AND ASSO-
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Using the hard collision model and a simple parametrisation for jet fragmentation
we derive expressions for same side and opposite side two-particle correlations and multiplici-
ties associated with large transverse momentum trigger particles. Recent data on rapidity
correlations and associated multiplicities can be well understood in such a model. We interpret
this result as further evidence for the presence of jets in large transverse momentum reac-
tions.

1. Introduction

There was considerable progress in the understanding of collision processes with
large transverse momentum particles within the last year [1, 2].

In this paper we use the hard collision model [3] which we did use before in Ref. [4] —
which in the following is denoted by I — for the calculation of inclusive cross sections
for the production of one or several particles. In 1 and in a similar way in Refs [5] to [9]
transverse momentum correlations at @ & 90° were worked out as function of transverse
momentum. The emphasis of the present paper is on correlations of large transverse mo-
mentum particles in the rapidity variable and on associated multiplicities. As in [10] we
consider jet fragmentation functions where the transverse momenta of particles relative
to the jet axis are taken into account, the parametrisation proposed in the present paper
has however practical advantages against the one used in Ref. {10]. We use jet production
cross sections according to the hard collision model which were found in Ref. [11] to
describe known data on opposite side rapidity correlations and the rapidity dependence
of single particle spectra at large g .

The paper is organized as follows: In Section 2 and Appendix A we describe inclusive
jet fragmentation functions and jet fragmentation multiplicities. In Section 3 and Appendix B
we calculate inclusive distributions of one or several particles in large g, reactions. The
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resulting expressions are compared with data on the Ay distributions of two particles on
the same and on the opposite side. These data [12, 13] give the best presently available
evidence for the appearance of jets in large ¢, reactions. In Section 4 we calculate same
side and opposite side associated multiplicities and compare with experimental data.

2. Production and fragmentation of jets
2.1. Jet fragmentation

In papers I and IT Ref. [10] we considered in detail a parametrisation for the jet frag-
mentation in the jet frame. We used as variables the longitudinal momentum p; along
the jet axis and the transverse momentum p, perpendicular to this axis,

dsn F+1 p" F "p—"z
e~ o (1-21) .
FET (1 P) ¢ 2.

Inclusive one-, two-, and three-particle distributions at large transverse momentum g,
taking the transveise momentum distribution within the jet into account were calculated
in II. Due to the considerable number of integrations, the resulting expressions
were rather cumbersome and numerical evaluation of multiple integrals was necessary
to obtain distributions which are of interest for phenomenological applications.

In order to calculate the inclusive distributions of interest more elegantly we propose
here an approximate jet fragmentation function parametrized in the vaiiables of the
overall c.m.s. In particular we use the rapidity y, transverse momentum ¢, , and azimuthal
angle ¢ of the observed hadron and the rapidity Y, transverse momentum P, azimuthal
angle @, of the jet in the total c.m.s. Furthermore we use variables in the parton-parton

c.m.s. which are denoted by a hat, such as the total jet energy E; = \/?/2, the jet rapidity f’,,
and the polar angle &,. These are related by
. E 1
cosh Y; = == —_— .
P, sing@,

2.2)

The invariant mass of the jet is M; =~ 0. In these variables our approximate jet fragmentation
functions is

S d(\@)ml (1 ql)F 1 exp[ («p—qs,)z_]
dydeq  dq 2) 4% P, ) rnc ¢

1 (r-Y)?
e - 2.3

x\/ncexp[ c? ] @3
with

c=—. (2.4)
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The parameter b characterizes the transverse momentum dependence in (2.1). The Gaussians
are convenient tor integrations. The widths ot the Gaussians in rapidity is motivated by

the calculations in II. The shape of the ¢ distribution follows from (2.1) by approxi-
mating sin?(p—®;) = (¢—P;)%. The normalisation can be determined from the energy

sum rule; asymptotically it is
V5
R4 (~2—) ~ 1, (2.5)

Integrating the distribution (2.3) over the whole interval in y, ¢, and ¢, we obtain the
multiplicity of hadrons per jet {a);,

d>n(s)
{ny; = J ——————dydepq dq

dydeq ,dq,
P
NG : 1 qa, \
—d( )(F+1) f qldql——z(——i)
" q; P,
bfcosh ¥y

Y;+A Dr+=x/2
(p—2)*] 1 _Oo-wy
dy J. dp —= exp [ — | = — . (2.6)
¢ ¢
YJ"A Or—nj2 J \/
The transverse momentum ¢, varies in the range

LA <P-P—E"E—
cosh ¥, =P W= aamy &7

by

, @7

where b’ is a low momentum cut-off in the jet system. Further, 4 appearing in the y ~ in-
tegration limits is used as

-— E A
4 = cosh™! \/—é;_-z_;=m3 -¥% = 43,2 (2.8)
L

with the particle mass m. The approximate integration, extending the integration limits
in y and ¢ to infinity, yields for F=1or 2

~-FllnEFI—é'— Fllbtz 2.9
O +>[ - (—E)H( )(——E:-,—)] @9)

] J

In Appendix A we define analogously the inclusive two-particle distribution from the jet
fragmentation.

2.2. Jet production
According to the hard collision model [3, 14], the cross section for production of two
jets has the form

d*ey(s) 1, do,
W T Py qu(xl)fjn(xz)jg‘ . (2.10)
hJ
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The indices s and o denote variables of the same side and opposite side jets. Due to trans-
verse momentum conservation it is

P ,=P,,=P, (2.11)
and

¢5 == ¢, ¢0 = ¢+7f.

. 1 1 . -
The function - Jialxp) [—x— ij(xz)] gives the probabilities to find the parton i [/] in
1 2

the hadron A4 [B] with the momentum fraction x; = pi/P, [x, = p;/Pg).
do,/di is the parton-parton scattering cross section; 7 and S refer to the parton-parton
collision. The following kinematic relations apply [3]

¢ @sct o, P, X e, . o,
= — — Xy & —={C
n g 5 g ) 1 \/E g 5 +ctg — 5
X 1 o, e,
= P2(1+17)(1+ —) X5 = (tg— +1tg )
L " \/
= —Pi(1+n) (2.12)

For da,-j/aft\ we use a parametrization which was found in [11] to describe opposite side
rapidity distributions

Oy _ X arnt 1>l 2.13
—= = =-{a - .
pr = 1 . (2.13)

with @ = 0.5, / = 3 for the hard scattering process gM - gM and a =1, [ =3 for
gq — jet+jet. n has to be chosen such that the ¢, dependence of single particle distributions
agrees with experiment (n ~ 4).

We use Eqgs (2.10) and (2.13) for calculating the same side and opposite side associated
multiplicities in their g,,, y, dependence. For calculating the rapidity .correlations
of two particles on the trigger side or on the opposite side we use the following simple
approximation for the two-jet distribution

d*oy(s) _ C_1_ex (_ %_) 1 e"i% 1 e-%

dY,dY,dP, dd Py Js /J2n B, J2r B, '
Here the same side and opposite side jet rapidities ¥, and Y, are uncorrelated. This
uncorrelated ansatz and the Gaussian shape of the rapidity distributions is motivated
by the experimental observation [13, 15] for present trigger transverse momenta (X,
= P J_/\/5/2 ~ 0.1). As shown in [11], the two-jet distribution (2.10) with Eq. (2.13) has
for these x, values of the trigger exactly this uncorrelated property. We should however
keep in mind that Y,, Y, correlations appear for larger trigger momenta [11].

(2.14)
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3. Jet structure in same and opposite side rapidity distributions

In Appendix B we collect expressions for inclusive distributions at large transverse
momentum. These expressions are derived using the uncorrelated expression for the
two- jet production cross section (2.14) and the jet fragmentation functions (2.3) and (A.1).
It is the advantage of our parametrisation that the complicated integral expressions factorize
and that most of the integral terms can be evaluated analytically. We should keep in mind
that the uncorrelated expression for the two- jet production cross section is only justified
for small x | of the trigger particle like in presently available experiments from the CERN-
-SFM [12] as discussed already in Section 2. Our expressions should be valid more gener-
ally if, e.g., the rapidity distribution of two particles, both on the same or on the opposite
side, is considered.

The transverse momentum dependence of the single particle distribution (B.2) and
the same side and opposite side two-particle distributions (B.7) and (B.13) can be used
to study questions like trigger bias and same side and opposite side large transverse mo-
mentum correlations. This was done in I as well as in Refs [3] and [6]. The ¢, dependence
of the expressions in Appendix B is the same as found in I; therefore we shall not discuss
these matters in detail here.

Two particles emitted from the same side jet are characterized by the distribution
in their rapidity difference, see (B.7), which is of the form

1 1=y
Wz((Y1—}’2)a Bs: Cis CZ) = == CXpP | — ?L__Z— . (31)
J7 cl 2 +C3 42 RELC RN S
T Ci1T¢e€; 2B§2 1 2

The characteristic correlation length is

1 (k2
L(q_j_b ‘1_L2) \/ +C§+C§

J2
- \/iqlqu2 2B2 q_j_l qu ( . )

L(g, ,»q,,) decreases with rising transverse momenta of one or both particles. For large g
the constant term b%*/2B2 can be neglected and we obtain the limiting behaviour

b
= for > 4,2
|~/2 4. qd.1 12
L(g,1,9,2) =+ 3.3
b
|_4 for g, > q,,.

L\/zq_u

This behaviour of the correlation length was already obtained as an approximation in
a more complicated way in II. In Table 3.1 we compare the calculated correlation lengths
with experimental values which we read off the experimental distributions given by Dar-
riulat et al. [12]. Calculated and experimental correlation lengths agree rather well. Before
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TABLE 3.1

Comparison of the experimental [12] and theoretical correlation length in the same side two-particle ra-
pidity distribution, Eq. (3.2). It is ¢, = 2 GeV/c. Further b = 0.355 (GeV/c) !, see I

q4, Range of experimental
(GeV/c) L@, 912 Lexp q, interval

0.5 0.52 0.66 0.4 —0.6

0.7 0.38 0.58 0.6 —0.8

0.9 0.31 0.50 08—1.1

1.2 0.24 0.33 1.1—17

interpreting this resuits as evidence for same side jets, however, a more careful study of
two- and three-body resonances is necessary.

Rapidity correlations of transverse momentum analyzed particles opposite to a trigger
particle were recently measured by the CCHK collaboration [12]. This data gives evidence
for the opposite side jet. In the following we analyse this data using our method. According
to Eq. (B.14) the distribution in rapidity difference for two opposite side particles has
the same form as Eq. (3.2). The CCHK collaboration determines the normalised distribu‘ion

TABLE 3.2

The azimuthal acceptance functions A4,(dd,c,, ¢,) and A2(49, ¢;, 2, ¢3) Eqs (B.9) and (B.15) for ¢,
= 2.5 GeV/c as fufiction of transverse momenta and 4¢

a) A(49, ¢y, ¢2)

4¢
9° 27° 45° 63° 81°
g2 -

0.2 0.10 0.30 0.48 0.63 0.75
0.6 0.29 0.74 0.94 0.991 0.999
1.0 0.45 0.93 0.997 ~1. ~1.
1.4 0.57 0.98 ~1. ~1. ~1.
1.8 0.65 0.995 ~1, ~1. ~1.

b) A:(48, ¢y, €2, ¢3)

\A¢
9° 27° 45° 63° 81°

91, = q_l_a\

0.2 0.01 1 0.09 0.23 0.40 0.56
0.6 0.08 0.54 0.88 0.98 0.998
1.0 0.20 0.86 0.99 ~1. ~1.
1.4 0.33 0.96 ~1. ~1. ~1.

1.8 0.4 0.99 ~1. ~1. ~1.
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dN°[d(y,—y3) of two opposite side particles and a corresponding normalised uncorrelated
distribution dN""°/d(y,—ys) which is obtained by combining particles from different
events. Using these two distributions the divided correlation R(4y) is determined

ch / dN\.lnC

R(4y) = .
49 = 465 =v9)] Aa=ys)

(3.4)

The data is given for trigger momenta ¢, ~ 2.5 GeV/c and transverse momenta on the
opposite side in three ranges ¢, , and ¢, > 0.3, 0.6 and 0.9 GeV/c. These distributions
are reproduced in our Figures 3.1, 3.2 and 3.3. It should be noted that the experimental
distributions at smalil 4y are distorted by a reduced efficiency for detecting closeby tracks[10].

In our calculation, the uncorrelated distribution of two opposite side particles can
be deduced from Eq. (B.8). It has the form

dn®"e 1 ()’2—}’3)2 ]
W2-vs)  JiaBir e °xp[ iBi+c+ed)’

In comparing our distribution with experiment we have to take into account that the
azimuthal acceptances A4,(49,c,,¢;) and A,(4P, ¢y, c;, ¢3), Egs. (B.9) and (B.15),
for detecting one or two particles from the opposite side jet are different. In Table 3.2
we give values for these acceptance functions calculated from (B.9) and (B.15). As to
be expected, the acceptance A4,(49d, ¢y, cs, ¢3) for detecting two particles in a given
range AP is smaller than A4,(4®, ¢,, ¢,). In the comparison we take further into account
that not all particles detected on the opposite side result from the hard collision process.
We use a two component model for the inclusive distribution N

N = aNhard coll. +(1 . a)Nlow g, background (36)

We treat o as a free parameter.

(3.5

data: qus 03 GeVic
R M.Della Negra etal,

ol — T q{](l(l.éGeVIc

05+ 07

0 05 10 15 20 ay
Fig. 3.1. The ratio R(4y) (Eq. (3.4)) as function of 4y for various values of the parameter &, « = 0.3, 0.5

and 0.7at g, = g, , = 0.45 GeV/c compared with data of Ref. [13] for ¢4, and g, , > 0.3 GeV/c. The
data for 4y < 0.5 are strongly biased by limited acceptance
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o data:q,3 06 Gevic
M.Della Negra etal,

q,,;5075GeVie

. Py

0 05 10 5 20 25 by

Fig. 3.2. The ratio R(dy) as in Figure 3.1; the theoretical curves are for ¢, , = ¢, , = 0.75 GeV/e, the
experimental data are for ¢, and ¢, , > 0.6 GeV/c

data : q 53} 09GeV/c
M.Della Negra et al.

4.5, 105GeVe

0 05
Fig. 3.3. The ratio R(dy) as in Figure 3.1; the theoretical curves are for ¢, = g, , = 1.05 GeV/c, the
experimental data are for ¢, and ¢ ; > 0.9 GeV/c

10 15 20 25 ay
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In Figures 3.1, 3.2 and 3.3 we compare the data for oppositely charged particles with
the result of our calculation. The calculation is for fixed average values of the transverse
momenta as given on the plots. For reasonable « values around 0.5 the calculated curves
agree well with the data outside the region Ay >~ 0. The width of the peak at low Ay
decreases with rising ¢ |, and ¢, as in the data. This agreement can be interpreted as evid-
ence of jets on the opposite side.

4. Associated multiplicities

4.1. Associated multiplicities in the hard collision model

In this Section we calculate multiplicities associated to one large transverse momentum
trigger particle. The trigger particle is characterized by the transverse momentum g
and the rapidity y, and we compute the number of associated particles at rapidity y, inte-
grated over all transverse momenta g, , within a given acceptance in the azimuthal angle ¢
on the same side or the opposite side to the trigger particle. We study in detail these associat-
ed multiplicities in a hard collision model considering the particles from the two jets.
Associated multiplicities were recently studied by Abad et al. [16]. They study in detail
the associated multiplicities from low g, background and use for the large ¢, component
only the relation

(npy ~ <P, ), (4.1)

i.e. fragmentation multiplicity from one jet proportional to average jet transverse moment-

um. We shall not consider the low g, background again, but we treat the multiplicities

due to the large P, jets in a more detailed way consistent with the jet fragmentation func-

tions used elsewhere in this paper. There are two possibilities to calculate the multiplicities

of jets in large g, reactions

(i) jets are considered in the c.m.s. of the irreducible subcollision of two partons. These
jets are characterized by the energy \/ §/2 and by jet multiplicities as calculated in

Section 2, Eq. (2.9) and in Appendix A, Eq. (A.4).

(i7) jets are considered in the total c.m.s. of the collision. Then the jet energy differs from

\//3/2 and therefore the jet multplicity is different from the one in case (7).

Here we adopt the possibility (i) where the total multiplicity of the two jets agrees with
the multiplicity observed in e+ e~ annihilation if quark-like jets are considered.

After these preliminaries we give the expressions for same side and opposite side
associated multiplicities (two-jet component only). We discuss first the opposite side
multiplicity which is more simple. We start from the basic formula (B.11) for the distri-
bution of one trigger particle and one particle on the opposite side. To calculate the multi-
plicity from the opposite side jet we replace the opposite side jet fragmentation function
under the integral by the expression for the jet multiplicity (2.9). The integrals over do,
and d® in the resulting expression factorize if we replace g, , by its average value in the
terms containing the azimuthal angle. Then they lead to the azimuthal acceptance function
A (49, ¢y, ¢, = b[{q,,>) defined in (B.9). To obtain the associated multiplicity we have
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to divide finally by the distribution of the trigger particle
nyls, yas qJ_I’ Vi, 91 = 0; 4P,

*!siz R
A, (M,cl, ) j dP, f d, de To, _dnid) (oS, 203,
{q J_2> ; R deYdP d‘ludhd% ©1=0
= V's/2 Yoo s ’
d 3n(s
dP, J ay, | av, -2 an(s)
deYdP dq 1dy,dey |, =0
Yo 4.2)
where we have defined
— A N 1 (J’2"Y;)2
(8, y2)05 = {ne($)) ———— exp[— . 4.3)
2 b BiKa ) (

VT {q _L2>

In the denominator we have performed the integral over d@; it gives approximately 1
for large g, ,. For the jet multiplicity {(n,5, y2)py we insert the expression (2.9); for the
jet fragmentation functions we use Eq. (2.3) integrated over &;; for the jet production
function we insert the hard collision expression (2.10). In Ref. [11] it was shown that
presently known data on opposite side rapidity correlations can be described by subprocesses
like g+9 —» q+q or g+M — g+M (q = quark, M = meson) if the cross section do; j/df
is suitably chosen. Here we use the results of Ref. [11] but restrict ourselves to the sub-
process q+q — q+¢q — jet+jet. We use the quark distribution functions f;,(x) according
to the fit of Barger and Phillips [17} and adopt for do; j/df the empirical parametrisation
from Kripfganz and Ranft {11],

do;;

dt
1, s and other kinematical quantities are defined in (2.12). With the integrands described,
the nominator and denominator of (4.2) have to be evaluated numerically.

For the same side associated multiplicities we use similar approximations and describe

jet production and fragmentation as above. The resulting expression for the same side
associated multiplicity is

<n2(S, V2,915 V1 P1 = 0; Aé)same

1 1\3
~ fm, fo = (1+rz+ 5) . 4.9)

vsi2 You Yu
G'J
= 4, ( ¢y, 0y = <ql2>> J.d JdY J * dY,dY,dP,
d’nys) — a
X {_____(___ {nys, y2)>1}
B dqlld.)’ld@l ¢:1=0 4.5)
- Vsj2 Yqy You A ' '
ap, | av, | 4y, &o, 1)
deYdP dql_dyldfh @1=0

Yo
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The expression in the curly brackets is defined in Eq. (A.4). The intgrals in (4.5) are again
evaluated numerically.

In Fig. 4.1 we plot the same side and opposite side associated multiplicities (4.2)
and (4.5) for y, = y, = 0 as function of the trigger transverse momentum q , , for 3 values
of \/s. The same side associated multiplicity is small and independent of the trigger

opposite same (S

Dot
.unit
/ly ,yz.o,y,so ° * 20 Gev
3} o ° 0 -
a a 0 -
2 b’ - 045GeVic
1t
0 1 2 3 & 5 6 7 qoew

Fig. 4.1. Theoretical curves of the same side and opposite side multiplicity per rapidity unitat y, =y, = 0
as function of trigger transverse momentum ¢ ,, Eqs (4.2) and (4.5), for 4/s = 20, 40 and 50 GeV/c. The
parameter b’ is b’ = 0.45 GeV/e (all hadrons)

transverse momentum; the opposite side associated multiplicity rises in the ¢, range
presently of interest approximately linearly with ¢, . This result justifies the ansatz (4.1)
of Abad et al. [16].

42. Comparison with data

In our comparison with data on associated multiplicities at large transverse momentum
we are mainly interested in the overall consistency of the hard collision model. Therefore
we try to understand the associated multiplicities due to the hard collision process in their
absolute size and in their dependence on the trigger transverse momentum and on rapidity.
We adopt the approach used by experimental groups (e.g. by Kephart et al. [I18]) that
the associated multiplicity due to the large g | process is equal to the total observed
associated multiplicity minus the multiplicity of the background low g, component which
is assumed to be equal to the multiplicity in a normal event at the c.m.s. energy correspon-
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data: ¢ (=90°, 15 =50 GeV

tO=53,
Nep SAMe Side
3
i ¢ ) — y, =075 ,b'=050 Gevie
+/,,<»:-/::: — ¥, =0
’ ‘ “ 6 B q,(Cevio)

Fig. 4.2. The same side charged multiplicity as function of the trigger transverse momentum ¢, , for trigger
rapidity y; = 0 and y, = 0.75 and parameter 6" = 0.50 GeV/c, compared with data of Ref. [1] at /5
= 50 GeV and at angles ¢ = 90° and ¢ = 53°

data: R Kephart et al.

o 5 =230CeV
[ L4 31 x
x k4 45 x
Nen OPposite side A+ 53 »
‘ v + 62 -
j| Yy =0, f§ <40GeV
+ i % b’ -050 Gevie
2 3
1t % ?
‘ ¢
0 . é ' 4 * é 4 ? -
q,{Gevk)

Fig. 4.3. The opposite side charged multiplicity at trigger rapidity y, = 0 as function of trigger transverse
momentum ¢ | ,, computed for /s = 40 GeV and the parameter »’ = 0.50 GeV/c, and compared with
data of Ref. [18] at 23 < v/5 < 62 GeV
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ding to the actual c.m.s. energy minus energy of the two jets. We compare the associated
multiplicity due to the hard collision process as calculated above directly with experimental
data obtained using this approach. As indicated above we shall not repeat here an analysis
like the one of Abad et al. [16].

When calculating associated multiplicities, we introduce only one new parameter,
the low momentum cut-off &' in Eq. (2.6). We find best agreement to all data using
b = 0.45 to 0.5 GeV/e.

In Fig. 4.2 we compare the results of Eq. (4.5) integrated over y, with data taken
from Darriulat {1]. In Fig. 4.3 we compare the resuits of Eq. (4.2) integrated over y,
with data of Kephart et al. [18]. In Fig. 4.4 we compare same side and opposite side

N

ch 150° ¢ £180° Nen ¢ <30°
05 06 |
04 04t

[}
02 F 02 e %
-~ ~ - 4+t ~
+ fc 0\\ //‘ = ‘}\
3210123 Y, 32101 23 Y,

Fig. 4.4. The number of charged particles per event per 0.5 unit of rapidity per Ap = 60° as function of y,
for trigger rapidity y; = 0 on the opposite side (150° < @ < 180°) and same side (p < 30°) as compared
with data of Ref. [19]. The theoretical curves were added to the background

associated multiplicities inside the azimuthal acceptance A¢ = 30° as function of the
rapidity. These distributions are calculated according to (4.2) and (4.5). We add the
calculated associated multiplicities to the background given by the experimentalists.
These curves we compare with data of the ACHM collaboration [19]

We find in these three Figures reasonable agreement between the data and our calcu-
lation. This agreement can be interpreted as evidence that the hard collision model describes
also the associated multiplicities in their absolute size, g, , and y, dependence consistently.

5. Summary

1. In Section 2 we have introduced a new parametrisation for jet fragmentation and
uncorrelated approximation for jet production which permit an easy evalunation of the
integral expressions defining inclusive distributions of large transverse momentum events
in the case that the transverse momenta of particles relative to the jet axis are taken into
acconnt.

2. We calculate the distributions and correlations of two large ¢, particles at the
same side and opposite side in the variable Ay = y, —y, and Ay = y,—y,, resp. The
agreement with recent data on same side and opposite side rapidity correlations can be
interpreted as evidence for two jets in large g, reactions.
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3. We work out expressions for large ¢ associated multiplicities in the hard collision
model. The agreement with presently available data indicates that the absolute size,
trigger transverse momentum and rapidity dependence of associated multiplicities can be
consistently described within the framework of the hard collision model.

APPENDIX A

Inclusive two-particle distribution from jet fragmentation

Similar as in Sect. 2, we define the two-particle distribution from the fragmentation
of one jet in the overall c.m.s.

a°nd) _@Fr)? (\1{) (1_ ql1+qu)"
dq,,dq ,,dy,dy,dede, 4,4, ~\2 P,

[ 1—Y)’  (yo— YJ)2:|
X exp| — 3 - 3
TC1Cx Ci C2
- &) —&)?
% exp[—— (9: : ) _ (92 ; ) ] (A1)
nCiCy 1 c3

Here and in the following we abbreviate ¢; = b/g ;i = 1, 2, 3. The normalisation &/ 2(\/_;/2)
is found through the transverse momentum sum rule

P, o9,

d°n(s) dn(s)
qlde_Lz JdY1d¢1

=(P,—q, ) ———. (A2)
dq,.dq ,dydy,dgdg, — + "V dq dyde,

Asymptotically, &/, (%;) ~ 1.
The two-particle distribution integrated over the variables of particle 2 is obtained from
the two-particle distribution (A.1)

@n(s)
<{na(s)0; -—_}
{ 2 *'dg, dy.de,
B
cosh ¥ *t Yu(¥141) Ou(P3,41) 6 A)
d°n(s
- dg J dy j do . @y
J o) *dq1dq,;dy,dy,de.de,
4 yo(¥s.a1) SL(®5,41)

cosh ?;
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Approximating the proper kinematical limits of the y, integration by ¥, - — o0, ¥, -
and of the @, integration by #;, - — oo and @, — oo, we obtain for F = 1 or 2 the following
result

. d3n(§) 1 _i-Yr 4 _ (91— ®5)?
<n (S)>>l } ~ e c1? —e c12
{ e dq,1dyde, €1 \/7T Cy \/TC
s qd1
M) e e e
1_@)F1n —,PL _F(l_gl_l_.lz_)(l_ @)F '
P, b P E; P,
_1 2 b12
(-39 )
2 P, Ey
where
bl
- < (1— Ii1) (A4)
Ey P,

The curly brackets above on the left side indicate that the expression in these brackets is
not the product of a single particle distribution and the jet multiplicity.

APPENDIX B

Approximate expressions for inclusive distributions at large tranverse momentum

In this Appendix we give approximate expressions for inclusive distributions using
the simple uncorrelated approximation for the two-jet production cross section (2.14)

and the jet fragmentation functions (2.3) and (A.1). We put &/ 1(\/ §/2) =, (\/ ?/2) =

Inclusive single particle distribution

52 Yae o2 @1+m/2 3
d a>n(s
Y f dP, j ay, J dy, J oo n(s) (B.1)
dy,dq, do, . dY,dY,dP dd dq,,de,dy,
Yo Q1

With our parametnsatlon for jet production and jet fragmentation the four ‘integrals
factorize. Extending the Y; and Y, integrations to the range —o0 < Y,, Y, < +o we
obtain

do CFY(N-=-2)! -2Dd.u:

_— f Wi(y1, Bss —_—_—— s . B.2
dyda o, O (2 ) 10 Bo ) or— N1 © (B.2)

Here is

1 1 yf
W 9 B 3 == el w— B.3
1(¥1> By, €1) \/71: \/23,2+Ci' exp( 2Bsz+cf) (B.3)
and
b

¢ =, (B.4)
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Same side two-particle distribution
We give the expression integrated over d(y,+y,) and integrated over the azimuthal

angle ¢, in the range ¢, —A4P < ¢, < ¢, +49P

@1+ AD w© V2
o j d j d(y1+y,) f dP
= ' Yit+y
dq,1dq , 2d(y,~y,)de, ? Lo +
@1~ 4D — 0 4,114,
Yo, Yeo @mint /2 . P
d dn(s
x J ay, [dYs f a® % n(s) . (BS)
) dYdYdP d® dq,dq,,dy,dy,de,do,
Yo, Y, Pmax ~ nf2
max
max = > . B.6
q(omin) (mln) (¢1 €102) ( )
Proceeding as above we obtain
do 4,49, ¢y, cIW(y1 = y2), By €35 €2)
= » €1 € V1= Y2} Dg, €15 €
d‘l_leQJ_zd(Y1 ~y2)de; ! AR b2
F+1)° 1 2D(q , + CFY(N-2)!
(F+1) ex (_ (g1 qu)) CFY( ) ‘ B
4192 (qi1+q_L2) \/3' (F+N-1)!
Here we have abbreviated
1 r1—y2)
WZ((.VI_yZ): Bss Cqs 02) = 3 2 exp - ;‘2071““2‘ . (BS)
— cic 1¥2 2 2
\/n\/fﬁ? +ci+cl 'ZBST‘FCH-%
The azimuthal acceptance is
+ AP
1 1 (pzz’
A(49, ¢y, cy) = J- d(}72~— zexp[— —_—
' N 2r 3 +c2 ci+c
1 1
x \erf n \/—2 + = - %2
¢y & 2 \/ 1 1
c po— _—
Net o
n 1 1 128
—erf || p2— ——)\/-+—~————- . (B.9)
( 2/Net &, \/ L1
c —_— —
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For sufficiently large A® and sufficiently large transverse momenta ¢, ; and g ,,
A (4D, ¢y, ) ~ 1 (B.10)

Distribution for one trigger particle and one particle on the opposite
side

We give this expression integrated over the azimuthal angle ¢, in the range
o +r—4P < @, < ¢+ 44D

Q14+ n+AD Vs)2 Yo, Yy, Pmintn/2
d’c
= do, dp, | 4y, | dy, dd
dq,,dq ,de,dy,dy,
1 tn— AP q,, Yoo Yoy @ max~"/2
y d*s, d>n(s) d’n(s) B.11)
dstYodPlddi qu_ldY1d‘P1 d‘IJ_sz’zd(Pz
with
max
max = : +ﬂ:, . B.lz
<P(min) (min) (p1+7, @2) (B.12)
As above we obtain
do A, (4D, ¢y, ¢3) Wiy, By, €1)
= 5 C1a €2} Yis Dy €
dqlldqlzd)’1d}’zd¢1 ! i ot !
2 ‘/s_/Z F F
C(F+1 1 2DP
x Wi(y2, Bo, 02)-—(—-)— f dP| — exp(— —4)(1— q-—-‘-‘) ( - gﬁ) . (B.13)
d,192 P \/S P, P,
q.1

Distribution for the trigger particle and two-particles on the opposite
side

We give the expression integrated over d(y,+y,;) and integrated over the azimuthal
angles ¢, and ¢@; in the interval ¢, +n—49 < ¢; < ¢ +n+4P, i = 2, 3.
d%c

dq_]_ldQ_j_2qu_3dy1d(y2—yS)d(Pl

= AZ(A¢a €1, C2 (:3)

X Wl(yla Bs’ Cl)Wz((Yz"')’a), Bw Cas Cs)

vs)2

C(F+1)? 1 2DP F £
x L’i J dPl—-—exp(—- J-)(l_ _q_l_l) (1_ M) . (B.14)
qd:19,29,3 P \/S P, P,

d.a
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The azimuthal acceptance is expressed by the function

40 AP
1
AZ(A¢’ €1, C2s c3) = RS T35 5 5 & f d(pz J‘ d¢3
ne2ek+ il +ciel N Yy

2 2 2 2 2 2 i
c3p3t+crp3+ci(@2—@3) n \/1 1 1
xe - erf x— ==+ 5+ S
"p[ Ziradrad ! = Naztata
P2, 9 R O Y
2 2 2 2
c c n 1 1 1 ¢ c
— ___z_aé —erf (‘pmin-{— —‘) \/"i + -3 -+ -5 _% . (B.15)
\/1+1+1 2/Net 3 < \/1+1+1
i g a ¢t G g
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