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In is shown that the requirement of exact conservation of the isospin is in contradiction
with the basic ingredients of the uncorrelated jet model. The nature of the strong correlations
resulting from an attempt to build an isospin conserving uncorrelated jet model is studied.
Modifications that make the correlations less visible are discussed.

The purpose of this paper is to comment on the idea of building an isospin conserving
uncorrelated jet model {1-4]. In particular we want to show that exact isospin conserva-
tion cannot be satisfied without giving up two essential ingredients of the uncorrelated jet
model: thé factorization and the absence of strong correlations.

The basic assumption in the uncorrelated jet model is that the scattering amplitude
for the process 2 — n factorizes to factors each depending on the state of one final state
particle only. Equivalently we can say that the final state wave function for fixed initial
state has the form [5]

1
[y = 7a [f deaf(ga’(9)]"0>. (1)
n!

Here we have assamed that all particles are identical and neglected the energy momentum
conservation constraint, because we shall be interested in internal quantum numbers
only. The operator af(q) creates a particle of momentum g. The function f{(g) controls the
shape of the single particle distribution: a suitable energy dependent choice of this func-
tion guarantees that the four-momentum is conserved on the average. The differential
dq is the invariant phase space element dg = d3g¢/2E.
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We can generalize the above model to the production of pions of three different charges
by writing [1-3]
- 1 - -
lyal)) = N [J daf(a)c(q) - a(9)]"(0). @)
n!
Now we have an isotriplet of creation operators a'(g) = (al(g), al(g), al(g)). The neutral
and charged pions are created by operators

al(q) = dai(q),

1
ak(g) = 7 (al(g) +ia}(q))- 3

The vector function 7(g) is chosen to be a unit vector. A possible choice is 7 = (v2/3, 0,
\/ 1/3). In order to produce all types of pions with equal probability we must have

[to(@| = [tlp] = [t @

The second equation follows also from charge conservation and requires that 7, and 7,
are relatively real. Thus they can be chosen to be real without loss of generality. Now the
state |p,(t)) is a direct product of 7 isovectors and contains thus in general components
of all isospins / = 0, 1, ..., n. In all cases at least the isospin / = n is present. Taking into
account the isospins of initial particles and leading final state particles the conservation
of isospin sets in the case of pp-scattering, e. g., the limit 7 < 2 [3]. The model described
by formula (2) is thus in explicit conflict with the isospin conservation. This is obviously
true for any model, where the matrix element for producing » particles of nonzero isospin
factorizes in the above mentioned sense.

A state of a definite isospin can, however, be formed by taking a suitable linear
combination of the states jy,(7)>. In particular the state

, 20+1 .
(w1, I3 = \/ A deYu;(Q) [p(z())> (%)

has the isospin I with the three-component 7; [1, 3]. The function Y, (Q) = Y, (O, )
is a spherical harmonic function. The vector 7(g, Q) is obtained from 7(g) by the related
rotation:

Tm(q> Q) = Z Dfnl'gn(dj9 @’ O)Tm’(q)s (6)
where m and m’ refer to indices 4, 0 and —, and D is a Wigner rotation matrix. If we sum
finally over all values of I, the result is not sensitive to the exact value of 1. So we choose
for simplicity 7= 0.

It is clear that the requirement for 7(g, ) (4) cannot be satisfied for all Q. The second
equation, related to charge conservation, remains however valid if we choose 7(q) to be
real. Then 7(g, ©2) covers the full solid angle for each ¢ in the integral (5). For simplicity
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we choose 7(g) to be independent of g. Then all real choices are equivalent. From the
choice 7(¢g) = (0, 0, 1) follows

7(Q) = (sin © cos @, sin @ sin @, cos O). )

Now it is easy to see that in the model defined by the equation (2) with 7 given by (7) the
multiplicity distribution of neutral pions is binomial with an average value

{ng> = ncos?O. t3)

Thus the ratio R = ny/n has the expectation value (R) = cos>@ and a variance propor-
tional to 1/n. In particular we get only neutral pions, when |cos @] = 1 and only charged
pions, when cos @ = 0.

Expanding {y,, I = 0]y,, I = 0) in terms of states with definite number of pions of
each charge, a straightforward calculation gives the following results: 1) ny = n_, 2) n,
and » must be even, 3) the probability of n, neutral pions is given by (n, even):

1
no![(} (n—no)!]?

Using the fact that the integral is the square of a Euler beta function we get [3] forn, < n
and even

p(nyln) JdeQ’(cos © cos @')"(sin @ sin @'Y, ©

(no—11!

ny!!

p(noln) oc (10)
For large n the probability density of the ratio R = ng/n approaches rapidly the limiting
behaviour

1

This is exactly the probability distribution of cos? @ on the unit sphere and it could have
been deduced directly from Eq. (8). A striking feature of the formula (11) is that the fluc-
tuations in R are practically independent of the total multiplicity. This is due to the fact
that for all n the quantity R is controlled essentially by one parameter: cos @ — not by an
increasing number of independent variables as one would expect in a2 model of uncorre-
lated emission. The fact that the above procedure in model building leads to strong cor-
relations has been observed previously [2, 3], but the connection between these correla-
tions and the dominance of one parameter has not been discussed.

The name uncorrelated jet model (or independent emission model) seems completely
inappropriate for a model with these extreme correlations. In taking the linear combina-
tion (5) we loose naturally also the factorization property used generally in defining un-
correlated emission.

There are several modifications that can be made to the model to weaken or hide the
correlations, but none of these leads to a strictly independent emission combined with
the exact isospin conservation. One possibility is to make the model directly for the abso-
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lute square of the matrix element, but then the exact isospin conservation cannot be defined
at all. Another change is to make (g) to depend on ¢. 1t is, however, clear that this does
not reduce the amount of correlations — it only makes them more subtle and difficult to
observe. One can also introduce more particle types. Biebl, Klein, and Nahnhauer [4]
have proposed a model, where n’s and s are produced in the same coherent state. This
reduces strongly the observable correlations because neutral pions appear together with
neutral g's, which decay always to n= and n~. One could also require the total isospin of
the pions and the ¢'s to be separately zero, i. e. introduce two independent vectors 7, and
:Eo and average separately over both. The resulting correlations would be weaker than in
the present model but stronger than in Ref. [4], if described in terms of the correlation
parameters f.., foo, feo €tc. On the amplitude level the correlations are, of course, always
weakened by the introduction of more independent parameters t. This observation leads
to one further possibility. The range of the correlations may be reduced by averaging over
7 separately in different parts of the phase space (e. g. in several rapidity intervals). The
result is then that the isospin is conserved separately in each of these intervals. One should,
however, avoid making the intervals too small, because the production of one particle
only in an interval is of course forbidden, if the particle has a nonzero isospin.
Finally we notice that an attempt to build an uncorrelated jet model for particles with
nonzero spin leads to similar problems as discussed above for the isospin case.
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