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If a solution of the wave equation has a branching point at a null surface, then there
are two and only two ways to extend the solution analytically across the null surface: the
phase of a null coordinate, assumed zero for positive values of the coordinate, may be chosen
+m or —n for negative values of that coordinate. It is shown that in the Minkowski space-
-time there exists a sufficiently general set of solutions for which the first choice gives negative
frequency solutions while the second gives positive frequency solutions. Moreover, the set
of solutions having this property can be defined by a construction prescription which remains
meaningful in an arbitrary analytic space-time which does not have closed time-like lines
and/or other global peculiarities. This allows giving a generally covariant definition to posi-
tive frequency solutions of the wave equation.

1. Introduction

Quantum mechanical interpretation of the wave equation becomes possible if the
linear space of solutions is divided into two parts, usually called positive frequency
solutions and negative frequency solutions. Unfortunately, the principle of division has
no meaning at all in a curved space-time. First of all, the positive frequency solutions
are in fact the positive energy solutions while energy in a curved space-time is not
a well defined concept. Secondly, the positive frequency solutions can be identified as such
by means of the Fourier transform which again in a curved space-time is not a well defined
concept. Both these difficulties can be reduced to a single one: the distinction is based
on a nonlocal property of solutions, which has no counterpart in a curved space-time.

2. The space-time picture to be associated with the experimental counting of particles

Some people try to resolve the difficulty by introducing an additional space-time
structure, €.g. a congruence of time-like lines [1]. The idea is that these lines represent
“counters’’ and the result of particle counting is somehow related to the state of motion of
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counters. We believe that this idea is misleading and is likely to give unphysical results, as
for example creation of pairs in the empty Minkowski space-time.

To perceive the true state of affairs, we have to note that particle counting is an irrevers-
ible process. A counter which has detected a single particle is not the same counter anymore.
It is true that people are clever enough to make counters which can be repeatedly used,
but this is a purely technical circumstance and it tends to obscure the ideal procedure
which consists in the following.

We have an unlimited supply of identical counters. Each counter can be used only
once; for example each counter is a little bomb which may be triggered (or not) by a coincident
particle. Counters can be made coincident with various events. Thus in the process of par-
ticle counting no idea of time-like continuity can be traced; we should think rather of
a space-time pattern of isolated events.

An objection may be raised that a counter has to have some duration if it is to be
“exploded”. But this duration is very short; moreover, because of the Lorentz invariance
of elementary interactions, the interaction of a counter with radiation does not depend
on the state of motion, apart from the trivial flux factor which can be always taken into
account.

3. The phase rule

Let P be a fixed event, L, and L. resp. the future and past light cone emanating from P
and s the geodesic distance from P inside L;: The quasiclassical wave function of a particle
with mass m has the form

exp (i times classical action) = exp (—ims).

s has a branching point at L, ; for example in the Riemannian normal coordinates emana-
ting from P!

s = VP~ () =@ =),

To choose the phase of s outside L, we observe that the wave function should vanish
at space-like infinity; this will be the case if

arg (s*) = —= for s2 < 0.

Inside L. the wave function should have the form exp(ims), which will be the case if

arg (s?) = —2n

1 We assume that the space-time is analytic so that the Riemannian normal coordinates can be
constructed.
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inside the past light cone. Thus, the phase of the square of the geodesic distance from P
has to be counted forward in time:

0 inside the future light cone,
arg (s*) = { —n outside the light cone,
—2n inside the past light cone.

Fig. 1. The argument of 52, where s is the geodesic distance from P, has to be counted forward in time

4. The Kirchhoff formula

Solution of the wave equation inside L, is determined by Cauchy data on L. In the
Minkowski space-time the solution is given by the Kirchhoff formula

1 [ & d
o) = f S Galr=) [¢(x)+x” %(})]

It is assumed here that P coincides with the origin of a Cartesian coordinate system
X0, x!, x?, x%, vy is the radius vector of a point inside L, and

Gr(x) = 20(x°)5(xx), xx = (x°)*—(x")*—(x?)*—(x*)?,

is the retarded Green function of the wave equation. The expression ¢+x*d,¢ on L.
can be calculated if @ is known on L;. Thus the Kirchhoff formula has the form

1 d3 "
o(y) = — j -—% Gr(y —x) - CD(x),
n 2x

L+

where CD(x) is a given function on L,.
In a curved space-time the Kirchhoff formula takes the form

1
o) = — j dp(x)Gr(y; x) - CD(x).

L+
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Here
du = [dx°...dx*/=gd(s?)

is the invariant measure on L, and Gy(y; X) is the retarded Green function of the wave
equation, as defined e.g. by DeWitt and Brehme [2]. (Our Green’s function equals 4n times
that of DeWitt and Brehme.)

5. Generally covariant definition of positive frequency solutions

We are now able to introduce two families of solutions of the wave equation with
the following properties:

1° both families are defined by a generally covariant construction prescription;

2° they contain a complete set of solutions of the wave equation;

3° in the case of the Minkowski space-time the first family spans the subspace of
positive frequency solutions while the second family spans the subspace of negative
frequency solutions.

Let 6, 3 and @ denote internal coordinates on L., such that 3 and ¢ are constant along
each null ray emanating from P while o is an affinc parameter along null rays. If ¢ and ¢’
are two affine parameters, then ¢’ = ¢F(3, ¢) where F can be an arbitrary positive function
of § and ¢. Hence, homogeneity with respect to the affine parameter is a generally covariant
property of a function on L..

Let us put in the Kirchhoff formula

CD(x) = o~ " *f(3, ¢),

where C is a constant (complex in general) and f an arbitrary function. The solution given
by the Kirchhoff formula inside L.. then has a branching point at L, (and at L. also).
To determine the solution outside L. we have to choose one out of two distinct
possibilities: to count the phase forward or backward in time. It is shown in the
Appendix that, in the case of the Minkowski space-time, we obtain positive frequency
solutions when the phase is counted forward in time and negative frequency solutions if
the phase is counted backward in time. Thus, the difference between positive and negative
frequency solutions is reduced to the purely local and geometrically meaningful
difference between the two ways of counting phase.

To avoid a possible misunderstanding we have to say the following. We do not mean
to say that each solution obtained by application of the phase rule is a positive frequency
one. This is not the case even in the flat space-time since, given a positive frequency solu-
tion obtained by application of the phase rule, we can always add to it a holomorphic
one, €.g. a plane cosinus wave, and the sum, in general, would not be a positive frequency
solution anymore. The point we try to make is that there exists a sufficiently general set
of solutions for which the nonlocal and noncovariant concept of positive frequency can
be replaced by a local and covariant concept, namely the behaviour of discontinuity across
a null surface. Moreover, the set of solutions with this property can be defined by a gener-
ally covariant construction prescription.
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6. Discussion

Positive frequency solutions have been treated by several authors, notably by Lichne-
rowicz [3] and Menski [4]. The most characteristic feature of their treatment is that the
positive frequency solutions are defined once and for 4ll, which means physically that the
creation of pairs by the gravitational field is not expected. Menski, in fact, states this point
of view explicitly.

Hawking [5] in his celebrated paper on pair creation handles a somewhat different
problem, similar to the Klein paradox in electrodynamics. On the problem considered
here he says that a time dependent gravitational field will create pairs but he does not
give any deails.

We agree with Hawking’s point of view. Granted, however, that the distinction between
positive and negative frequencies must be time dependent, it is extremely difficult to
see how — in a generally covariant theory — it can fail to be space dependent. We push
this point of view to its logical limit making the distinction purely local and event dependent.
We think that our treatment is in agreement with the physical nature of particle counting,
as described previously. Event dependent distinction is a sort of probabilistic snapshot
of the universe, as taken by an observer located at a definite place and in a definite epoch.

7. The case of massive particles

Unfortunately, our definition is not applicable for the Klein-Gordon equation. The
particular Cauchy data on L,, chosen by us because of their generally covariant dependence
on the affine parameter, would give solutions rising exponentially at space-like infinity.
To avoid this, we have to prescribe Cauchy data on L; and L- and to demand exponential
vanishing at space-like infinity. However, such Cauchy data cannot be chosen arbitrarily
but have to satisfy a consistency condition similar to the one used in the exact theory of
diffraction. The difficulty in handling this condifion prevented us from obtaining any
results for the Klein-Gordon equation. We believe, however, that the phase rule is still
the clue to the solution.

APPENDIX

We consider solutions of the wave equation, which can be represented inside L, by
the integral

1 a2
o) = & f —-jfa[u—x)(y—x)]ixi“‘Cf(i), 5 > Iyl o
bid X x|
x0=|x|
For f=1
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Consider also the integral

d’k

e ST ke = KO0k x, 3)

KO k|
which is to be understood as the limit of the integral

k e _
o T, )
KO=|k|
where ¢ is an infinitesimal future oriented time-like vector. The last integral is convergent
for ReC > —1 and equal to (we put x = y)

—iz e+ (P =y = +IpH ¢
¥l

2nI'(C)e for y° > |yl 5)

Thus we have inside L,

1 (d®
oly) = — J—(;E S[(y—x)(y—x)] =7}
T x

!; (C+1)

[y
_re @k e~ |R(C- 1, ©
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But the integral on the right-hand side is an analytic positive frequency solution of the
wave equation. It will be identical with @(y) everywhere provided the latter is extended
analytically outside L, in accordance with the phase rule. Thus we have established the

equivalence of the phase rule and positivity of frequency for f= 1.
The case of an arbitrary f can be reduced to the previous one. The operator

1

Mo = 0 d
; Oi—}’oay; Yi

aoa i=1a2’3’
¥

acts on ¢(y) in the following way
1 1 (d’x
T My, Pl B O[(y—x) (y —x)]CD(x)

1 (a3 0
-+ [ o= 001 s coeo, ™
nJ x 0x

Thus, by repeated application of the operator we can obtain Cauchy data of the form
|x'_1_cshi:...l.
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where

S = x| Yxl0;, ... |x|o, Ix| 7€

igiz ... in
It is easy to prove by induction that for C # 0 all spherical functions

df

Vi =

yiz e in i,i;...i,.m' lx|"*!
can be expressed by means of S; ;. This means that Cauchy data of the form|x| U x/|x))
can be obtained by repeated application of the operator i~* M, to the spherically symmetric
function |x|~€~*. Now it is clear that the operator i~ My, preserves both positivity of fre-
quency and the phase rule. Thus, it is seen that the phase rule is equivalent to the posit-
ivity of frequency for the whole class CD(x) = |x|™“~*f(x/|x]).

A remark on completeness

C can be any complex number for which calculations given in this Appendix are valid.
The integral (1) is convergent for any C because the d-function cuts out both potentially
troublesome end points |x] = 0 and |x| = c0. In a curved space-time, however, there will
be in general a “tail” of Green'’s function (see the paper by De Witt and Brehme); to make
the integral convergent when there is the tail we have to assume that

ReC < 1.
The integral (4) is convergent for
ReC > —1.
The inequality
-1 <ReC<«< 1

has a simple physical meaning. Suppose that C is real. The functions ¢(y) are then the
eigenfunctions of the operator 3 M, M*’, where

M,, = x,p,—x,p, = i(x,0,—x,0,)
and eigenvalues are easily seen to be C?—1:
3 M, M 9(y) = (C* = Dg(y).
Now, we have classically for a massless particle
M, M" = [xxpp—(px)°] = —(px)* <O.

Therefore

and
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It is not necessary, however, to take C real. We shall obtain a complete set of functions
taking C, for example, along any straight line

—]1 < ReC = const# 0 < 1.
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