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EFFECTS OF NUCLEON-NUCLEON CORRELATIONS IN THE
MULTIPLICITY DISTRIBUTIONS OF PARTICLES PRODUCED
IN HADRON-NUCLEUS COLLISIONS
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It is shown that if one takes into account the nucleon-nucleon short range correlations
in the target nucleus and the impact parameter distribution of the elementary production
processes, the average multiplicities and multiplicity dispersions decrease by ~ 109 for light
and ~59% for heavy nuclei.

1. Introduction

In this note we apply some of the ideas discussed in the preceding paper [1] and eval-
uate probability distributions of the number of inelastic collisions in hadron-nucleus
interactions. These distributions can be used for analysing the processes of multiparticle
production on nuclear targets [2-9]. In some models e. g. the average number of inelastic
collisions v directly determines the average multiplicity [2, 5, 6, 8, 9] and the dispersion
of v gives the dispersion of multiplicities of produced particles [6]'. The probability distribu-
tion of v is usually calculated [4, 6] from hadron-nucleon cross-sections and the single
particle densities of the nuclear targets using standard methods of probability calculus.
In view of rapid increase of experimental data and their accuracy and because the com-
monly accepted methods of analysis of experimental results employ v distributions {10, 11,
12] it becomes important to know quite accurately v, its dispersion etc. Therefore, in this
note we report the results of the calculations of probability distributions of v in hadron-
-nucleus collisions which employ the general form of the target ground state density as
an expansion in terms of the nucleon-nucleon correlation function and which keep the
impact parameter distribution of the elementary production processes in the incident
hadron-target nucleon collision.

* Address: Instytut Fizyki Jadrowej, Radzikowskiego 152, 31-342 Krakéw, Poland.

1 There also exists another parameter which can be equally well used in descriptions of hadron-nucleus
interactions: the number of ”wounded” nucleons w = v+ 1 {9]. However, as was stressed in Ref. [9] these
two parameters are not equivalent in the case of nucleus-nucleus collisions, where there is no relation
between w and v.
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We find that nucleon-nucleon correlations and the finite spatial distribution of the
inelastic cross sections decrease the values of the average number of collisions and their
dispersion by 5-10%4. In view of the present accuracy of the measured average multiplici-
ties and dispersions such corrections should be indeed taken into account in an accurate
analysis of the data on multiparticle production in hadron-nucleus collisions.

In our model, as we argued in Ref. [9], the nondiffractive production on nuclei is de-
scribed as an incoherent composition of individual collisions computed by the standard
techniques of the probability calculus. One may wonder therefore how does this model
reproduce e. g. total cross-sections which have recently been measured up to ~300 GeV
[13]. This also raises the problem of relations between the Glauber Model and the
classical non-quantal probability calculus. Such relations have already been pointed out
[14, 15] and are discussed in more detail in the accompanying paper [1].

In this note, in Section 2, we estimate, using probability calculus, the role of the two
particle correlations in the target in the multiparticle production processes off nuclei.
Section 3 contains conclusions.

2. Probability distributions of the number of inelastic collisions for correlated ground state
wave functions

Our basic formula for the hadron-nucleus reaction cross-section is Eq. (1) of the
preceding paper [1]:
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o = [d*b [ dr, ... BPr¥o(ris ..., PP {1— jgl (1—ox(b—5)))}

= [d*{1-¢ Il (t—oxB=5))} 2.1

with same notation as in Ref. [1]. <...) denotes the ground state average. However, in
this note our ground state wave function contains two particle correlations and cannot be
factorized into a product of single particle wave functions as in [1]. The probabilistic
interpretation of (2.1) leads to a construction of the probability distribution of the number
of inelastic collisions and evaluation of the average number of collisions, dispersion, and
higher probability moments.

Let us introduce the generating function ¢(x) [9]

é(x) = fd’b ﬁ [+ (x=DorB—5)—1]> = o A. X'P,y, (2.2)
i=1

vy=0

where P, is the probability of v inelastic collisions of the incident hadron with target
nuleons. From (2.2) we get
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To perform averaging over the ground state we use the general expansion of the ground
state in terms of the two-particle, three-particle etc. correlations [18] and neglect terms
depending on correlations of order higher than two. In this approximation we can write
the density in the following form

[FoFis oos PR = 0(F 1y s F) 2 000 . PG+ Y [0VF) .. oVF)] 23

all possible
pairs of contractions

where a contraction is defined as follows
AG, ) = 0P 1) — 0 VE DY)

oG N (rICE s, 7o) (2.4)

I

with
oV(F) = [dry ... dPrao(ry, oy T4,
0P, 1) = [ dPry . dPrao(Fy, .., T o). (2.5
The dimensionless function C(?,, 7, is the two-particle correlation function which has the
following properties
Cryr) =0 for [r;—rl -
§ Prig"FHCE P = 0. (2.6)

R 2SN

7 rl——r2> is known only
for some simple cases e. g. for the noninteracting Fermi gas model of nuclear matter or
for the harmonic oscillator shell model of the nucleus. Nevertheless, we know quite enough
about C(r,,r,) to be able to estimate the role of nucleon-nucleon correlations in the
averages (2.2a), (2.2b), (2.2¢).

It is useful to introduce the parameter /., called the correlation length, which is defined

as follows

The exact form of the correlation function C(r, r)=C <

I(R) = [drC(R, ), R=3%(F +r), F=7r —rs Q2.7
0

where we assumed that C depends on the distance r (but not on its direction). For infinite
isotropic media /, does not depend on R, but for finite nuclei its values in the middle and
on the surface of the nucleus may differ.
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Various authors give different estimates for /.. For example in [19] one finds
I, = — 0.85 fm and this (rather large) value is supposed to be an effective value averaged
over the I-é-dependence. In Ref. [20] the authors give I, = —0.6 fm. The lowest estimate
of I, comes from Ref. [21] as is /[, = —0.3 fm. Note that they are all negative. From the
definition (2.4) we can see that this means a repulsion at small distances.

In this paper we express the effect of correlations only through the correlation length
I,. In doing so we hope that we do not oversimplify the problem. Our view is supported
by the existing calculations for hadron-nucleus scattering in Glauber Model [19] which
are rather insensitive to the particular form of the correlation function and depend
mainly on /.

From (2.3) and (2.1) we get
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where we used the property (2.6). From (2.2a — ¢) and (2.8) we get
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To perform numerical computations we assume C(F,,7,) = C(_r'l—?z), with /, much
smaller than the radius of the target nucleus, and give the following spatial distribution
to og(s):

i

— op(s) = —
Ox x(®) 2na

e—s2/2(1
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with \/a much smaller than the radius of the target nucleus. With this approximation
we obtain

S, x) = 1—(1—x)axD(B),
T(B, x) = (1-x)%¢.08 | dzg%(®b, 2),
where
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&, is an effective correlation length smeared out with the spatial distribution of the projec-
tile-nucleon interaction. It reduces to the correlation length /, when I, > a.
The generating function @(x) may now be written explicitely as a power series in x
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where
o = ogD(B), B=¢&ok ] dzg*(b, 2).

In (2.12) a term with x” is the probability (multiplied by &%) of v inelastic collisions.
We get therefore an expansion in powers of f =~ 10-1:

P, = szb {(A) o' (1—0)* " +8 A4-1) [(A"2> o'(1—w)*™ 27"
v 2 v
_2<A—'2) wv-x(l_w)a—z—(v—1)+ (A—2) wv~2(1___w)A—2—(v—2)]
v—1 v=2

+ higher order terms in f§ (up to E (‘;) order)}.
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From (2.12) we get more explicit expressions than (2.10), (2.11)

A A_‘l -~ - o~ - A
p? = lﬁ.)(ﬁ jdﬁb [Dz(b)+éc f dzo*(b, z)] - == [—{:—‘; —1], (2.13)
A
£(3)
&= d*bl1- —  (1-w)'Tpm . )
% f [ Z Fmia—amy OO TF (214)
0
In the optical limit we obtain:
lim of® = [ d’b[1 —exp (— AogD(b)+A%ca¢. [ dzg*(b, z))]. (2.15)
A= - o0

3. Calculations and discussion of the results

To illustrate the role of correlations and the spatial distribution of the hadron-
-nucleon production processes we computed v, D? = ¥2—32 from (2.9) and (2.10) and
the average multiplicities and their dispersions given by the model of Ref. [9]

1 (v+Dny,

Di =31 (+1)D*+4 D,

(3.1)
(3.2)

TABLE 1

Average number of collisions and dispersions for og = 30 mb and nuclear densities taken from Ref. [9]

- — — 1

A v D: Dy L Dyfny a(lic((GI;\f;;g-z
27 1.76 1.08 6.66 11.75 0.57

64 2.38 2.31 8.48 14.35 0.59 & = —0.6
80 2.58 2.77 9.06 15.20 0.60 a=11.5
207 3.69 5.90 12.19 19.95 0.61

238 3.90 6.58 12.75 20.81 0.61

27 1.83 1.27 6.95 12.05 0.58

64 2.44 2.68 8.90 14.64 0.61

80 2.64 3.21 9.52 15.49 0.61 £ =00
207 375 6.70 12.79 20.19 0.63 a =115
236 3.95 7.44 13.37 21.04 0.63

27 1.95 1.47 7.28 12.55 0.58

64 2.60 297 9.26 15.30 0.61 £ =00
80 2.80 3.51 9.87 16.19 0.61 a =00
207 3.96 6.95 13.03 21.07 0.62

238 4.16 4.64 13.57 21.95 0.62
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The numerical results for 300 GeV incident nucleons are collected in Table I and Fig. 1.
The numerical values of average multiplicities and dispersions go down (relative to the
results with no-correlations and point-like production) ~ 109 for light and ~69; for
heavy nuclei. Such corrections should already be considered relevant (though not very
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Fig. 1. Dispersion vs average multiplicity for 300 GeV nucleons interacting with five nuclei (whose atomic

numbers are shown next to the points). The points were computed from Egs (3.1) and (3.2) where we used

ny = 8.5, Dy = 4.23, or = 30 mb. Dots were obtained for & = —0.6fm, a = 11.5 (GeV/c)~?, crosses

for & = 0, a = 0. The straight line is to guide the eye and to visualize the vertical shift of crosses relative
to dots

A

important) in discussions of the recent experimental results. However, the plot of D,
vs n4 is hardly influenced by the corrections computed in this note: They shift the points
along an approximately “universal” straight line (see Fig. 1). We have also computed
the D, vs n, plot for n-nucleus collisions at 100 and 200 GeV with the same param-
eters of elementary collisions as in Ref. [6] and the correlated nuclear wave functions
with ¢, = —0.6 fm and a = 7.5 (GeV/c)~2. We obtained a D, vs n, curve undistinguish-
able from the one of Ref. [6]. Again, the points corresponding to specific nuclei were
merely shifted along the curve D, vs n, without deviating from it.
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Finally, to see how an analysis of an emulsion data is influenced by correlations, we
computed P, and v for emulsion with og = 32 mb from the formulae

¥ N P
A

P = eerTT .
= NN (3.3)
A

Y N,A
A

VEm = Op =5 » 3.4
Ei RZNAO{{A) ( )
A

where N, is the number of nuclei 4 in cm3 We found vg, = 2.77 with {, =0, a = 0
and g, = 2.52 for £ = —0.6, a = 11(GeV/c)2, hence a 9%, negative correction.

The authors are grateful to Dr J. Babecki whose interest in very accurate values of the
average number of collisions stimulated these computations.
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