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A SYMPLECTIC FORMULATION OF RELATIVISTIC PARTICLE
DYNAMICS

By W. M. TuLczyew
Max-Planck-Institut fir Physik und Astrophysik, Miinchen*
( Received December 21, 1976)

Particle mechanics is formulated in terms of symplectic relations and infinitesimal
symplectic relations. Generating functions of symplectic relations are shown to be classical
counterparts of Green’s functions of wave mechanics.

1. Introduction

Canonical formulations of nonrelativistic particle dynamics are based on concepts
of symplectic geometry such as groups of canonical transformations and Hamiltonian
vector fields. These concepts are not well suited to the purpose of describing the dynamics
of relativistic particles. A generalization is obtained by noticing that canonical trans-
formations and Hamiltonian vector fields are special cases of Lagrangian submanifolds
of suitably constructed symplectic manifolds. The use of Lagrangian submanifolds in
canonical descriptions of dynamics offers several advantages. A unified approach to
Lagrangian and Hamiltonian formulations is obtained and the relation between these
formulations is better undestood [3, 6]. Relativistic and nonrelativistic dynamics can be
described within the same conceptual framework. The transition from particle dynamics
to field dynamics is simplified.

In the present note we reformulate standard nonrelativistic dynamics in the general
framework of Lagrangian submanifolds. Subsequently we apply this framework, to relativi-
stic dynamics. The use of generating functions for describing Lagrangian submanifolds
is emphasized. A wave mechanical interpretation of generating functions is given. Only
particles moving in a given external field are considered. The note is written in the language
of local coordinates. Global definitions of the concepts used in this note can be found
in other publications [3-6].

* Address: Max-Planck-Institut fir P\hysik und Astrophysik, Foringer Ring 6, 8000 Miinchen 40,
Germany.
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Lagrangian submanifolds are defined in Section 2 following a brief review of symplectic
geometry. Generating functions of Lagrangian submanifolds are introduced in Section 3.
Applications to particle dynamics are discussed in Section 4, 5 and 6. In Section 7 the
relation of generating functions to objects used in wave mechanics is demonstrated.

2. Symplectic manifolds, Lagrangian submanifolds, canonical relations

A symplectic manifold (P, ) is a manifold P with coordinates (x*) and a differential
form

o =} w,dx" A dx* 2.1)
such that the covariant bivector field w,, satisfies conditions:
w,u* =0 implies u*=0 2.2)
and
O,y = 0. 2.3)

The dimension of P is even and will be denoted by 2n. Darboux’s theorem states that there
exist (locally) coordinates (q', pj),i,j =1,...,n such that

o = dp;, A dqg'. 2.4
Due to the algebraic condition (2.2) there is a contravariant bivector field w** satisfying
o 0™ = 8~ (2.5)

The differential condition (2.3) is equivalent to
'8, w* = 0. (2.6)

The contravariant object w** is used to define the Poisson bracket

{f,8} = 00, f0:8 2.7)
of two functions f and g on P. The Jacobi identity
{fehhy+{{gnL/1+{{hf} gt =0 2.8)

is satisfied as a consequence of (2.6).
An active transformation

X = ¢"(x%) (2.9
is called a canonical transformation if
O (B(x"))8,8"0,9" = W, (x"). (2.10)

A vector field X* is called an infinitesimal canonical transformation if

£x0,; = X"0,0,;+0,,0: X"+ 0,;0,X" = 0. (2.11)
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Combining (2.11) with (2.3) we obtain

O3, X") = 0. (2.12)
If fis a function on P then

X* = —o"™0,f (2.13)

is an infinitesimal canonical transformation. Conversely if X* is an infinitesimal canonical
transformation then there exist (locally) functions f such that (2.13) is satisfied. If X*
=—"d,fand Y* = —w*0,g then

X"0,Y" = Y*6, X" = —0™0,{f, g}. (2.14)

Eq. (2.13) defines a homomorphism of the Lie-algebra of functions with respect to Poisson-
-brackets (Poisson algebra) onto the Lie-algebra of infinitesimal canonical transformations.
A one-parameter group

X* = g1, x¥), (2.15)
$"(0, x*) = x~, (2.16)
$5(1, ', xM) = ¢+, x") (2.17)

of canonical transformations defines an infinitesimal canonical transformation X such
that

0
X¥(¢*(1, x*) = PRACESS (2.18)
Conversely if equations (2.18) are integrated with the initial condition (2.16) then the

result is a (local) group of (local) canonical transformations.
A submanifold N of P of dimension k described by

x* =&, a=1,..,k (2.19)
is called an isotropic submanifold of (P, w) if
o&r ot

N =10, — dr A df = 0. 2.20

COI 7 Oz ata ata ( )

At each point of N vectors u* satisfying

il

*x 2. =0 2.21

Wy U ot ( )

form a vector space of dimension 2n—k. It follows from (2.20) that vectors tangent to N
are solutions of (2.21). Vectors tangent to N form a space of dimension k. Hence k < 2n—k,
or k <{ n. An isotropic submanifold of (P, w) of dimension n is called a Lagrangian sub-
manifold of (P, w). Tt follows from Darboux’s theorem that Lagrangian submanifolds
exist.
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Pairs of points in P form the product manifold P x P. Coordinates (x*) and (x'*) of
these points define coordinates (x’, x*) of PxP. The product manifold Px P and the
differential form

0O = L 0, (xdx™ A dx'*—1 0 (x*")dx* A dx* (2.22)

define a symplectic manifold (PxP, w© w). A map ¢: P — P is canonical if and only
if its graph D is a Lagrangian submanifold of (Px P, w © w); for dim .D = 2n and

0O0|D = } 0, (¢"(x"))3,8°0,8 dx" A dx’—} w,dx* A dx*. (2.23)

A Lagrangian submanifold of (PxP, w © w) is called a canonical relation. The graph
of a canonical transformation is a special case of a canonical relation.

Contravariant vectors at points of P form the tangent bundle TP. Components (%*)
of a vector together with coordinates (x*) of the point at which the vector is attached
define coordinates (x*, x*) of TP. The tangent bundle TP and the differential form

drw = } (X*0,0,,dx" A dx*+0,,dx%* A dx*+0,dx" A d%Y) (2.24)

define a symplectic manifold (TP, d;w). Let X be a vector field (an infinitesimal diffeo-
morphism). Equations

X = X*(x") (2.25)

define a submanifold D' of TP of dimension 2n. It follows from (2.11) and (2.24) that X
is an infinitesimal canonical transformation if and only if D’ is a Lagrangian submani-
fold of (TP, dyw) since

dro|D' = 3 (X*0,0., X* A dx*+0,,0,X"dx" A dx*+ w,,0,X"dx* A dx?). (2.26)

A Lagrangian submanifold of (TP, dyw) is called an infinitesimal canonical relation.
Infinitesimal canonical transformations define special cases of infinitesimal canonical
relations.

3. The cotangent bundle, Lagrangian submanifolds generated by functions

Let Q be a manifold of dimension n with coordinates (g°). Covariant vectors at points
of Q form the cotangent bundle 7*Q. Components (p;) of a covector together with the
coordinates (g') of the point at which the covector is attached define coordinates (¢', p )
of T*Q. The canonical structure of the cotangent bundle consists of a projection

ng: T*Q - Q: (4, pp) + (4) (3.1
and the differential forms
0g = pidq’ (3.2)
and

on T*Q. The pair (T*Q, wy) is a symplectic manifold.
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We describe three types of Lagrangian submanifolds of (T*Q, w,) generated by
generating functions. Each higher type contains lower types as special cases.

I. Let F(q¢') be a function on Q. The set N of elements of 7*Q with coordinates
(¢, p;) satisfying

pidq’ = dF(q) (3.4)
is a submanifold of TQ of dimension n. The equation (3.4) is equivalent to
oF
P = — i (35)
éq
We have
2y . )
@olN = o-ipgi 44" A dd’ = 0. (3.6)

Hence N is a Lagrangian submanifold of (T*Q, wg).
II. Let a submanifold C of @ of codimension k be described by

g=7, a=1,..,n—k 3.7
and let F(¢*) be a function on C. The set N of elements of T*Q with coordinates (¢', p;)
satisfying
o
at*

D dt* = dF(1"), 4q' = fi{(t (3.8)

is a submanifold of T*Q of dimension n. Equations (3.8) are equivalent to

o f= %) 3.9
Pigg =g 4 =10 (3.9)
We have
of! o*F o
N = dp, dr = A di*—p, b =0, )
gl PiA a4 A Pigaagdt A di* =0 (3.10)

Hence N is a Lagrangian submanifold of (T*Q, wgp).
II’. If the submanifold C is described by

GYNgH) =0, A=1,..,k (3.11)

and if F(q') is an arbitrary continuation of F(¢*) from C to Q then N is the set of elements
of T*Q with coordinates (g', p,) satisfying

pdq’ = d(F(qi)MhG”(qi)) (3.12)
for some values of (4,) € R*. Equation (3.12) is equivalent to
oF G4 o
Pi= — +Ay G(¢g") = 0. (3.13)

o tog’
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We have again

2% 2~4 A

. F) . . .
5730 dg’ A dg'+ 2, 5eiag] dg’ A dg'+d), " dg'=0 (3.14)

confirming that N is a Lagrangian submanifold of (T*Q, w,). Functions F(t*) on C and
G(4,, ¢") = F(g)+4,G*(g") on R*x Q are two types of generating functions of N.

III. Let A be a manifold of dimension k with coordinates (4,) and let G(4,, ¢') be
a function on A x @ such that

N A k 3.15
rank| —w, —— )} = k. .
02,400y° 8A,0q (3.15)

The set N of elements of T*Q with coordinates (g, p;) satisfying
pidq’ = dG(A4, q°) (3.16)

for some values of (2,) is a submanifold of T*Q of dimension n. Equation (3.16) is equiv-
alent to

_ G aG 0 217
P = aq, 3 6AA = V. ( . )
We have
2 G
N=-——dg’ A dg'+ ——— di, A dg* = 0. 3.18
g oq5q ¥ A Q+6q‘a/1,, AN dg (3.18)

Hence N is a Lagrangian submanifold of (T*Q, wy).

In the three constructions given above essential use is made of the canonical 1-form
04 on T*Q. The restriction of 8, to the Lagrangian submanifold generated by a function
is essentially equal to the differential of a lift of the function to that submanifold.

The structure of the cotangent bundle T*Q induces similar structures in the product
manifold T*Q xT*Q and the tangent bundle T7*Q.

In terms of coordinates (¢'%, p}, p*, p,) the induced structure of T*QxT*Q consists
of the projection

mexmg: T*QX T*Q — OxQ: (4", p} 4", p) + (", 4 (3.19)
and the differential form
0,00, = pidq" —pidg’ (3.20)
and
wpOwy = dp, A dg"*~dp; A dq'. (3.21)

The pair (T*Q xT*Q, wy © wy) is a symplectic manifold.
In terms of coordinates (¢', p;, ¢*, p)) the induced structure of TT*Q consists of the
projection

TT{Q : TT*Q g TQ . (qia pja q.k, 131) + (q,ia qk) (3‘22)
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and the differential forms

dpllg = pidq' +pidg’ (3.23)
and
drwg = dp; A dg'+dp; A dq’. (3.29)
A second induced structure consists of the projection
1'.T"Q . TT*Q - T*Q : (qi’ pj> éks I;I) +> (qia Pj): (325)
the differential form
irwg = pidq’~q'dp; (3.26)

and the form dywy. The pair (TT*Q, drwg) is a symplectic manifold.

The induced structures make it possible to generate Lagrangian submanifolds of
(T*QxT*Q, wy © wy) and (TT*Q, drwy) from generating functions. In the simplest case
a canonical relation D « T*QxT*Q is generated by a function S(g",¢*) on Qx Q.
In this case D is described by the equation

didq"—pdg’ = dS(¢", ¢') (3.27)
equivalent to
L, s 88 (3.25)
p; = 66]”. ’ pi = aq, . .
If D is the graph of a transformation then equations (3.28) can be written in the form
g" =&  p), 1= ndd" p) (3.29)
Relations
g o¢ ¢ oE
__ék__‘f_k_._%_é_=0, (3.30)
dq" 0p° O9q° 0Op:
& on;  on; oF .
LS TR S (3.31)
oq" Opx 09" Op;
on; on;  On; Oq;
— o (3.32)

corresponding to (2.10) are satisfied as a consequence of (3.29) being a canonical trans-
formation.
Let

g" = &(¢"Y (3.33)
be a transformation of Q. The submanifold D =« T*Q xT*Q described by

i i aé ’
q".= &g, ErRdad (3.34)
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is the graph of the point transformation corresponding to (3.33). It is easily seen that D
is generated by the function F = 0 on the graph C of the transformation (3.33). Equiv-
alently D is generated by the function G(2;, ¢/, ¢*) = 2(¢"*—&(¢")) defined on R"x Q x Q.

Let f(¢,p;) be a function on T*Q and let
.0 )
x-T y__9 (3.35)
op; oq’

be the infinitesimal canonical transformation corresponding to (2.13). The corresponding
infinitesimal canonical relation D’ is described by

. of . of
i , == 2 3.36
op; P oq’ ( )
It follows from
pidq’ —q'dp; = —df(q’, p)) (3.37)

that D’ is generated by the function —f{g", p ). The infinitesimal canonical relation D' may
also be generated by a functon /(¢’, ¢’) on TQ according to the formula

pdg +pdq’ = diq’, ¢') (3.38)
equivalent to
. ol ol
pi = -—a—l N pi = :“:-' . (3.39)
q oq

4. Nonrelativistic particle dynamics

Let Q be the configuration manifold of a mechanical system. As usual we assume
that dynamics of the system is described by a one-parameter (local) group of (local)
canonical transformations

q" =&t q’, p).  pi =t q, p) (4.1)

of the phase manifold T*Q.
Fixing the initial points and varying the time ¢ in (4.1) we obtain trajectories

q =y =8t g, p), =2 = nt, ¢, b0 (4.2)

of the system. The graphs D, of transformations (4.1) form a one-parameter family of
Lagrangian submanifolds of (T*Q xT*Q, w, © wg). We assume that D, are generated
by generating functions W, of one of the types described in Section 3 and called Hamilton
principal functions.

Dynamics can equivalently be stated as an infinitesimal canonical transformation

Xd" p), Y(d'. p) 4.3)
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from which the group (4.1) is obtained by integration. Equations

oxt ox* — 0 4
opy op; o @4
o%; + X" _ 0 4.5
op,  0q° “3)
Y, 2y,

Wt 0 (4.6)

corresponding to equation (2.11) are satisfied. Equations
a'= X" p), p; = Y(d" p) .7

define a Lagrangian submanifold D’ of (TT*Q, dyw,). We assume that D' is generated
by a generating function L(¢', ¢) on T'Q according to the formula

pidd'+pdq’ = dL(d, ¢) “4.3)

equivalent to
- oL oL @9
pi"' aqgs pi_ aq, )

and also by a function — H(q', p;) according to the formula

pdq'~q'dp; = —dH(d', p)) (4.10)
equivaient to

. 0H . OH @.11)

D= o’ q_api' :

The functions L(q', ¢’) and H(¢, p;) are called the Lagrangian and the Hamiltonian
respectively.
Example: the harmonic oscillator. Equations of motion

p=mq, p= —kq 4.12)

define a submanifold D’ of TT*Q, where Q is the one-dimensional configuration manifold
of the harmonic oscillator. From

pdq+pdq = —kqdq+mqdq = di(mg*—kq?) 4.13)
and
) . 1 r ., o,
pdq—qdp = —kqdq— Epdp = —d} P +kq 4.14)

it follows that D’ is a Lagrangian submanifold generated by the Lagrangian
L(g, q) = Y(mg*~kq?) (4.15)
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and that the Hamiltonian is
1 2 2
H(q,p) =} ~P +kq® ). (4.16)
The one-parameter group of canonical transformations obtained by integration is

q = qcos wt+ r sin wt, p’ = —gmw sin ot+ p cos wt, 4.17)
mo

k. : . o
where @ = \/—— If sin wt # O then equations (4.17) describing D, can be written in the
m
equivalent form

maow maw

p=-——(q¢—qcoswt), p =—1(q coswt—gq). (4.18)
sin wt sin wt
It follows from
7’ ’ ma) ’ 14 r
p'dg’'—pdq = ——— [(q' cos wt~q)dq'—(q'—q cos wt)dq]
sin wt
mao
=d— (q'% cos wt—2q'q+4¢* cos wt) (4.19)
2 sin wt

that D, is generated by the Hamilton principal function

Wid', q) =

Y (q'* cos wt—2q'q+ g* cos wt). (4.20)

If sin ws = 0 then cos wr = +1 and D, is described by
g ==xq, p ==p @21
and generated by W, = 0 on the submanifold C, of Q x Q described by ¢’ =

I+
=

5. Relativistic dynamics

The approach to dynamics emphasizing Lagrangian submanifolds and their generating
functions has the advantage of being applicable to relativistic dynamics.

Let us consider the motion of a freely falling test particle of mass m (> 0)
in space-time Q with an indefinite metric g;;. The Lagrangian of the particle is the function

L(d, ¢’) = mV g,¢'¢’ (5.1
defined for time-like vectors g' for which gijc}icf > 0. Interpreted as a generating function
the Lagrangian generates an infinitesimal canonical relation D] « TT*Q. Equations

pi = mgij‘jj(gu‘.lkq'l)_l/z, gu‘jkql > 0, (5.2
pi—Tipg’ =0 (5.3)
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describing Dy are derived from
) 1/2(% 5igjkéjékdqi+ gijq'jdéi)' (5.4)

Equations (5.2), (5.3) can be written in the equivalent form

["idqi+pidéi = dLi(qia q.j = 'n(glmélq.m

lii_rgcjpkg-j =0, (5.5)
gijPin =m? (5.6)
and
= kg 5.7
q = m g°p; (5.7
for some A > 0. It follows from
pdg'=g'dp, = —d(i(~ g"pp;—m)) (5.8)
that the function
Hy(4, 4, p)) = A~ gpp;—m) (5.9)
defined on R*xTQ is the (generalized) Hamiltonian of D,.
A curve
g =50, p=xd (5.10)
will be called an integral curve of Dj if for each ¢
. A . dy*  dy, .
's i kﬂ = ! 1 3 At s T, s T, »
(4" piq" p) (7() 241 i dr (5.11)

belongs to Dy . If (5.10) is an integral curve then the curve ¢’ = y!(t) satisfies the Euler
equations

a'+Tq'q" = ¢'gug’ (@ +Thq'd™ (g.9"3) %,

o Cdyl d

4, q’, 4 = [y, , —1, qtg? >0 5.12
(q.4q9’.9) (v() o dtz) 4:;9'q (5.12)

easily derived from equations (5.2), (5.3). Thus ¢' = y'(¢) is an arbitrarily parametrized
geodesic. Functions y;(¢) are obtained from (5.3). If «'(¢) is the normalized tangent vector

i Jj ky —1/2
wi(n) = % (&k % _d;;> (5.13)
then
(1) = mg (1), (5.14)
Equations (5.12) are invariant under arbitrary changes of parametrization
t+t = k1), dﬁk # 0. (5.15)

dt
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dx
Equations (5.14) are invariant if o > 0. Consequently integral curves can be replaced
[¢

by oriented one-dimensional submanifolds of TQ. An oriented one-dimensional sub-
manifold ¢ of TQ will be called an integral manifold of Dy if each vector tangent to ¢
and pointing in the direction of the orientation belongs to Dj.

In terms of integral curves of D; we define a submanifold D, of T*Qx T*Q
An element of 70 x TQ with coordinates (¢", P g%, p;) belongs to D, if there is an integral
curve (5.10) of Dj such that ¢* = y%0), p, = x(0), ¢ =+ (1) and p; = x(r) for
some t > 0. Since Dj is an infinitesimal canonical relation we expect D; to be a canonical
relation and knowing the Lagrangian (5.1) we expect D, to be generated by the function
Wi(q", g’) defined for time-like separated points with coordinates (¢”) and (¢'") and equal
to the geodesic proper time interval between these points multiplied by m. Let (¢”, p}, 4%, py)
be in Dy and let ¢' = y(r), p; = x,(t) be the integral curve of D; such that ¢* = y%(0),
o= x0), ¢" = () and p; = x,(r). Since

Wq", g’y = m 5 Veydid'd, (' d") = (vf(o, %) (5.16)
and since ¢' = y/(¢) satisfies Euler equations we have
dW(q", ') = mgiq"/(gug™ ") *dq" ~ mg,;q'(guq"q) "Hdq’, (5.17)
where
¢, q) = ( ), 4 )>, (q°q") = (?( ) —j(i)) (5.18)
It follows from (5.13) and (5.14) that
i = mgya'(8ud“d) % pi = meya(qugtaH (5.19)

Hence
pidq" —pdq’ = dW(q", ¢’)

which confirms the expectation that D, is a canonical relation generated by W(¢", ¢’).
The function W,(q” g’) is called the Hamilton principal function of D;; The canonical
relation D, is said to be the integral of the infinitesimal canonical relation Dj.

6. Relativistic dynamics. An alternative approach

Relativistic dynamics has been formulated as a constraint system in the spirit of
Dirac’s generalized Hamiltonian dynamics [, 2]. In our terms the dynamics of a particle
of mass m is described by an infinitesimal canonical relation Dy = TT*(Q generated by
the zero Hamiltonian on the mass shell M < T*Q defined by

g'pip; = m*. 6.1)



Equivalently Dy is generated by the Hamiltonian

H (4, ‘}is p) = )v(\/gijp;p}-—— m)
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(6.2)

defined on R x T*Q. The difference between Hy(4, ¢', p,) and the Hamiltonian Hy(4, ¢', p;)

of Dy is that 4 in Hy(4, q, p;) is not restricted to positive values. From

pidg' —gidp, = —d(2\N g7pip;~m))
we obtain equations
\"/gijPin = m,

o

ya i
q = —8°P;
m

pi—Tipd’ =0
describing Dy;. The Lagrangian of Dy is the function
LA 2 ¢75 45 = g — AN g4,2;—m)
defined on R*xTQ. From
P+ pidd’ = d(ig' =N g7 3h, = m))
we obtain equations

/g”) Aj = m,

q = % g”lj,

. A

pi=— -0 gﬂ‘i o
2m

pi =4
equivalent to (6.4), (6.5), (6.6).
As in Section 5 we define integral curves

4 =70, p;=1®

by requiring that

i i dy* dy
l, i’ ka = lta 'ta'_'5 T
(4% pj»q"s p) (v() xi(0) Ty

(6.3)

(6.4)
(6.5)

(6.6)

6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

belongs to Dj, for each t. Integral curves of Dy include integral curves of Dy, curves

obtained from integral curves of D; by replacing (5.14) by

1l1) = —mg (D)

(6.15)
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and also constant curves in M (single points). Integral curves are invariant under completely
arbitrary changes of parametrization. Consequently integral curves can be replaced by
integral manifolds. A submanifold ¢ of T*Q is called an integral manifold of Dy, if each
vector tangent to ¢ belongs to Dy,. Integral manifolds are one-dimensional.

We define the integral Dy, = T*Q xT*Q of Dy by the definition that was used
in Section 5 to define D;. An element of T*QxT*Q with coordinates (q", p}, 7~ p)
belongs to Dy if there is an integral curve (6.13) of Dy such that ¢* = 7%(0), p, = x,0),
g" = y(r) and p} = x,{t) for some 7 > 0. Since Dy is the closure of the union of D
and the canonical relation — D; generated by — Wi(q", ¢’) it follows that D, is a canonical
relation. 1t is difficult to give the Hamilton principal function of Dy in full generality.
If Q is flat and the metric tensor g;; is constant then Dy, is generated by the function

Wl i 47, 4 = 2dq" — )= i g7A2;— m) (6.16)

defined on R*x @ x Q. If 1 is restricted to positive values then formula (6.16) gives an
expression for the generating function of D, in the case of flat spacetime. This expression
can be simplified by using stationarity conditions

T 1 i A ij
vgliA; =m, q"-q = —g"i, (6.17)
m

The result ist

Wiq", ) = mVegi (@ -d) (@ —¢) . (6.18)

Formula (6.16) can not be simplified without the assumption 4 > 0. Formula
o g g oo i A 2
Wie"s @) = Aq" =4 = o (g"hid;—m) (6.19)

is completely equivalent to (6.16).

There is little difference between the two approaches on the level of particle trajectories.
Integral manifolds of Dj are oriented submanifolds of T*Q. Integral manifolds of Dy
are the same submanifolds with the orientation disregarded. The orientation is not lost
in the second approach since it is a natural orientation provided by unit vectors

. 1 ..
u' = —g"p; (6.20)
m

tangent to integral manifolds.

A wave mechanical interpretation of the different Hamilton principal functions of
the two approaches is given in the next section.

Vectors (6.20) distinguish a natural parametrization as well as orientation. A third
approach to relativistic dynamics emphasizing this parametrization is possible. Let Dy,
be the infinitesimal canonical relation generated by the Hamiltonian

. 1
Hy(q' py) = >m g'pip;s 6.21)
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or equivalently by the Lagrangian
m

Lm((!i, ‘jj) = 3 ga‘jéifj’i- (6.22)
The relation Dy, is described by equations
pi = mgi;q’, (6.23)
f’i“rijpkfij =0. (6.24)
Integral curves
a'=76),  p;= ) (6.25)
of Dy satisfy equations
d*y! dy' dyt
[ + l.' —_— = y 6.26
ds % ds ds (6.26)
dy’
xi(s) = mg;; s (6.27)
which admit only trivial changes of parametrization
s +» 5+ const. (6.28)

The integral of Dy, is a one-parameter group of canonical transformations since Dy
is associated with an infinitesimal canonical transformation. The description of dynamics
by Dy, has the disadvantage of being incomplete without the mass shell condition

glpipj = m? (6.29)

and equations (6.23), (6.24) supplemented by (6.29) no longer define an infinitesimal
canonical relation due to the loss of one dimension. The only way to increase the dimension
without losing essential information on dynamics is to disregard the distinguished
parametrization passing to Dj or Dj.

7. Hamilton principal functions and wave mechanics
Wave functions y(t, ¢) of the harmonic oscillator satisfy the Schrodinger equation

oy h? oy k
= -~ . 7.1
ot 2m oq® * 2 v (7.1

Distributions A4,(g’, g) defined by

mam )% : me (q'% cos wt— 2q'q +q? cos wt)

A0q'q) = (s ) eF 2o (7.2)
2mi sin wt

if sin ot # 0 and by
4(q's9) = d' F¥9 (7.3)
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if sin wf = 0 and cos w? = +1 lead to a one-parameter group of integral operators

&(q) + [4,(q', PP(q)dy. (7.4)

Composition relations

[ 49", aY4(q', )dq’ = 4., (4", 9) (7.5)

are satisfied and the function

w(t, q) = [4A(q. ¢)¢(q")dq' (7.6)

satisfies the Schrodinger equation (7.1) for any (sufficiently regular) function ¢(g’). In the
exponent in the formula (7.2) we recognize the function (4.20). Also (7.3) is compatible
with (4.21). We conclude that W/(q', ) is the classical counterpart of 4,(q’, g).

Let Q be the flat space-time of special relativity with coordinates (¢°), i = 0, 1, 2, 3.
The coordinate ¢° is interpreted as time. The metric tensor has constant components
g and g". Wave functions p(g’) of a relativistic particle of mass m satisfy the Klein-Gordon
equation

i oy m?
sqog TR0 .7

The distribution 4,(¢", ¢’) defined by

1 1 1

Anq’ ) = — -
uld™s a) = 5 Qrhy?

—i-/ik Tk — gk —
J e T g, — m)d

1 h 1 F L g gy - 2T —m)
S T d*idA (1.8)
2m i (2rh)

satisfies the composition relation

' 1773 j a j ’ j ! a 11 j 1ri ’
(Au(q . @) e 4u(q’, ¢ —4u(d’, ¢ o Ay(q ,q’)) d*q = Ayq"", 9"
q%=const

(7.9)

and the function

. o . 9 o
w(q') = f <Au(q', qNP(g")+B,(q") e A(q', q")) dq’ (7.10)

is a solution of the equation (7.7) for any (sufficiently regular) functions ¢,(g’’) and @,(¢").
The distribution A4,(¢”, ¢’) can be also defined by
1

0o h —i-lk(q"‘-q")_ Pia a .
All(q P qj) = ';‘ W Jeﬁ O(g Jl;/tj—n12)d4ldﬁ,

1 A 1 Ml angi-ay— 2 @i, —m2)
_bn e [/1 (@i~ 5 (g'ihily )Jd‘*/ldi. (7.11)
2m i (2zh)
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Restricting A to positive values in the last expression we obtain the distribution

. . 1 h i i —’— [}.;(q’i—41‘)— —i (g"fi.,-ij—mz)]
A u’ N — T # 2m 14)vd.. 7.12
i(q", @’) 2m i (2nh)* J € & nds (7.12)

i>0

The distribution 4,(g", g’) is a Green’s function for the Klein-Gordon equation (7.7).
The assymptotic expression
i i Y )

444", ¢') ~ N(q", q")e (7.13)
is obtained by applying the method of stationary phase to the integral (7.12). Comparing
formulae (7.11), (7.12) and (7.13) with formulac (6.16), (6.18) and (6.19) we conclude
that functions W(q”, ¢") and Wy(q", ¢’) are classical counterparts of distributions
Aq", ¢%) and 4,(q", ¢°) respectively.

The author is greatly indebted to Professor Jiirgen Ehlers for his hospitality at the
Max-Planck-Institut and also for critical reading of the manuscript and valuable
suggestions.
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