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It is shown that the conventional expression for the n-reggeon branch point trajectory
an(?) = na(t/n®)—n+1 does not apply in general to nonlinear Regge pole trajectories. When
the form of a trajectory is somewhat restricted, a reconstruction of the J-plane occurs and
a new branch point emerges to the right of the classical branch point. If pole trajectories
rise as lt[* where x < }, the momentum distribution on reggeons becomes asymmetric
when the momentum transfered by one reggeon reaches some critical value.

1. Introduction

Experiment shows that Regge trajectories are approximately linear in the scattering
range 0 > 1 > —1 GeV2 Resonances belonging to a Regge-recurrence are also arranged
along a straight line in the Chew-Frautschi diagrams. These experimental data serve
as a justification for a large number of models based on approximately linear Regge
trajectories, and in some of these models the linearity of trajectories is raised to the level
of a strict regularity in strong interactions dynamics.

On the other hand, it is reasonable to assert that Regge trajectories are nonlinear,
e.g. on account of resonance instability. And the question is, to what extent is the neglect
of nonlinear terms of Regge trajectories justified. Leaving the arguments for the nonlinearity
of trajectories alone, we want to emphasize a simple, but rather interesting effect arising
when the nonlinearity of trajectories is taken into account in the framework of reggeon
calculus.

2. Statement of the problem

Let us represent the contribution of a (simple) Regge pole to the amplitude of a high
energy hadron interaction in the form

M (s, 1) = n(e(D)g*(®) (s/s1 ", O
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where () is the signature factor, g(¢) is a vertex function and «(r) is a Regge pole trajec-
tory.
The contribution from the n-multiple exchange of the reggeons considered is then
defined by the expression [1, 2]
i

n-1
M (s, 1) = (_> Jd’;’él e @Koy AN (K1 ooy K)

T
x (= x3)) ... n(a(—KZ)) (s/sg)Prrs —*m=n, )

where N(xi, ... K,) is some vertex function (we do not specify its form since, in this paper,
we are interested in the behaviour of the trajectories of n-reggeon singularities), x; is the

transversal component of the i-th reggeon momentum, k; = v —t;, while
Kid oo+, =K = /=t. €))
The function f, is
Bu(kys .. Ky) = a(—kD)+ ... +o(—xK]). 4

To find the trajectory of the n-reggeon branch point, we must extract the leading
asymptotic term of expression (2). From (2) we see that the main contribution to the
asymptotics is given by a maximum of the function B,(x,, ..., x,). i.e. at 1 <O

ocn(t) = max n(Kl’ sery Kn)_'n"'l’ (5)

when x; belong to the ray [0, ) and are connected by condition (3).
If all reggeons are the same and their trajectories are linear, then the transferred
momentum is distributed uniformly between all reggeons,

;c1=...=rc,,=;=\/—t/n2, ©6)
and [1-5]
a,(t) = na(t/n®)—n+1. Q)

However, an entirely different picture may arise in the case of nonlinear reggeon exchanges.

3. Exchange of two nonlinear reggeons
In this case (after integration over angular variables)
N*(k, k—x,)

Vo (=(k—x,))xrc, €

exp {&[B(k1, k—1,)—2]}, 8

M,(s, t) = iJEdelxl

where ¢ = In (s/s,) and

Ba(xy, k—1,) = o — kD) + o~ (k—K,)*). &)
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The extremum condition for the function B,(kx,, x—x,) in the variable x, is
’\‘1‘1'(_’(?) = (K'—Kl)a'(-(x—xl)z)' (10)

The value k, = k/2 always satisfies condition (10), i.e. this point is an extremum of
the function B,(x,, k — k). However, for the point ¥, = x/2to be a maximum, it is necessary
to implement the additional condition

~2

[4)

6x2 ﬁZ(Kh K-KI)LQ:‘K/Z < 07 (11)
1

1.e.
20/(t{4) > (— 1)’ (1/4). (12)

We now study the conditions (10), (12) in more detail. Let a Regge pole trajectory
satisfy the dispersion relation with one subtraction

oo

t Im o(3)
= q(0)+ — | d9 =,
a(t) = a(0)+ - J 59— 13)
to
Equation (10) is then reduced to
(k;—x/2) | d9 Im «(9)K(9, k, k,) = 0, 14)
to
where
KGO, v, ;) = 8% — i (k—K,) [284 k7 +K(k—K,)] (15)

[94(x—x)*T*[9+x1]

From (14) we see that the point ¥, = /2 is an extremum for the function f,(x;, k — k).
But since the function K(9, k, k,) is not constant in sign in the integration region, condition
(14) can also be satisfied for other relations between w; and k.

Condition (11), (12) now has the form

0

'[ds Im «(9)

to
If we suppose (as it is usually done) that Im a(9) is positive in the entire physical
region, then (16) is satisfied for all # 2> —4¢,/3 (irrespective of the trajectory form). Conse-
quently, in this kinematic region the point x, = x/2 is a maximum of the function
B2(k:, x—k,) and the leading branch point will move along the trajectory

oy(t) = 2a(t/4)—1. 17

However, when 1 < —4t,/3, the integrand in (16) is of a different sign in the region of
integration and therefore the validity of the inequality (16) depends on the behaviour of
Im «(r). It is easy to see that condition (16) can be violated if Im «(¢) is great enough near
the threshold and increases not too rapidly with z.

494 3¢
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Let us consider the situation when condition (16) is violated, and the point k, = «/2
is not longer a maximum of the function f,(x,, ¥ —«). In the vicinity of the point k, = /2

1
Ba(y, k—x) = Br(x[2, k[2) = & bz(K)AZ'F ] b4(1c)A4, (18)

where

4 =K —k2, bfK) =~ Bk, K'—Kl)]x|=x/2'

-~ n
1

Suppose now that k increases and at some k = iy condition (16) is violated. Then the
coefficient functions in the expansion (18) exhibit the following behaviour in some vicinity
of this point

sign b,(x) = sign (x —xy),

by(kx) =0,
ba(x) < 0. (19)
| . B 3]
; :32" | hraSg :
: /\ %o |
R
% - N

; %7 %k

Fig. 1. The left column demonstrates the behaviour of the function B2(3y , x—,), defined by (9), at different

values of t = —»%. The middle column shows the saddle point position of this function in the #, variable

plane (signs +(—) indicate the directions of rises (falls) on the relief of the considered function). The right

column represents the position of the branch points «,(t) and @,(¢) at various ¢ (dashed lines denote the
cuts situated on the second sheet)

From (18) we see that at k > kg two maxima in x; emerge in f,(x,, k —k,), both maxima
being symmetric relative to the point x/2. The latter point will now be a minimum (see
Fig. 1). Thus at the point k = x there occurs a reconstruction of the relief of the function
Ba(x;, k—x,) (see Fig. 1) and at ¥ > kg the asymptotics of the amplitude M,(s, 1) are
defined by the saddle point at k; = x4 = x/2+{(¢) (the function 2{(¢) gives the distance
between k. and x_ for real k > kg). Consequently, in this kinematic region the leading
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contribution is given by the branch point! with

-

/= 2 — 2
(1) = a(— (\’—2—1 +C(t)> ) +a (- (\Lz—t —C(t)) ) -1 20)

In the language of the J-plane, this picture looks as follows. When x varies from 0
to kg, a branch point &,(#) moves on the physical sheet of the J-plane. A branch point at
J = a,(¢) lies on the second sheet with respect to the branch point J = a,(7) (see Figs 1, 2)
and does not contribute to the asymptotics of the amplitude. When k passes through
the value kg, the branch point J= a, emerges from the second sheet, settles to the right

7

Fig. 2. The typical behaviour of the Regge pole trajectory and the branch point trajectories «,(¢) and z,(¢).
The dashed line indicates that the given singularity lies on the second sheet of the J-surface

of a, and gives the main contribution to the asymptotics of M,(s, ¢). The typical behaviour
of a pole trajectory a(f) and branch point trajectories a,(t) and a,(f) is shown in Fig. 2.
In the Appendix it is shown that after such a reconstruction of the asymptotic regime,
the branch point at J = «, remains on the physical sheet of the J-plane and continues to
contribute to the asymptotics, though its contribution will be decreasing compared to
that of the branch point J = aj.

From expression (18) one can find the behaviour of the function {(¢) at f near tx = —x%.
Differentiating (18) with respect to k; and setting the derivative equal to zero, we obtain
the equation for the extrema of B,(ic;, k—x;) in K,

(1 —5[2) [b2(r) +5b4(x) (k1 —5/2)*] = 0. @n
The condition (21) is satisfied at
K, = k/2
Ky = Ky = K[2% V —6b3(<)ba(r). 22)

! We call it the anomalous branch point in contrast to the normal branch point with trajectory (17).
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Comparing with (20), we find that at k ~ kg
{0) = v = 6b,()]ba(r). (23)

As soon as b,(k) ~ k—kg (see (19)), {(¢) ~ \/K—KK, the function {(¢) being real for real
Kk > kg. Such a behaviour of {(¢) leads, in particular, to the fact that

ay(tg) = ax(tg),  aa(tx) = @(ty), (24)

i. e. the trajectories a,(r) and a,(¢) do not cross, but are only tangent at the point t = 4
(see Fig. 2). In the language of the J-plane, this means that the branch point at J = a, is
always placed to the right of the branch point J = «,.

The reconstruction of the J-plane at ¢z = # is also displayed in a change of the asymp-
totics of M,(s,t), namely

My(s, ) ~ s*Oflns  at t > t,
~ sl 5% at t =1y,
~sOfns  at t <ty (25)

Whether the anomalous branch point a,(¢) remains dominant with further increase
of (—1), or at some values of ¢ the reconstruction of J-plane would occur again and the
branch point at a,(t) would be dominant, depends on the behaviour of the Regge pole
trajectory. However, it can be shown that a decisive factor here is the asymptotic behav-
iour of Regge trajectories. Suppose that for large (—1¢)

oty ~ —y(=1), O0<v<<1, (26)
Then
2

0
W Baky, K=K )lky=nj2 = —4p¥(2v—1) (Kfz)zv-z- 02))
1

Since as is seen from (27) condition (11) is violated at v < 1/2 the branch point «,(¢)
will be dominant for all 7 < #x. For v > 1/2 the branch point at J = a, (if it has emerged
on the first sheet of J-surface at some #) will again go to the second sheet (with respect
to the branch point J = ;). The case v = 1/2 requires taking into account next terms
in the asymptotic expansion of a Regge trajectory.

We now investigate condition (10), defining extrema of 8,, at v< 1/2 and t - — 0.
If ky/x — const # 0 or 1 with increasing x, then (10) is satisfied only at the point k; = /2,
which is a minimum of 8, in the case considered. If at x — 0

Ky = 0, Kifk -0,

then the left- and right-hand sides of the equality (10) behave as k-1 and x?"-1, respec-
tively, i. e. f§, has no maxima in this region of «,.
Now let ¥, — 0. Then it follows from (10) that a maximum is reached at

K v
Ky & o) a”— K1, (28)
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The second maximum of f#, in x, is situated at

PV
K=Ky & — k71 0.

«'(0)

Thus, both the maxima in k, go with k away from the point x; = k/2 and approach
asymptotically the points k; = 0 and x; = x. The function {(¢) at t - —co behaves as
follows

(o ~ ‘/T_’ +O((—1y 1), 29)

and, consequently, at large (—1)
ay(t) ~ a(t)+a(0)—1. (30)

Thus at v < 1/2 and «(0) = 1, trajectories of a Regge pole and a two-reggeon branch
point coincide asymptotically.

We also note that if the dispersion relation (13) has a linear term b¢, then the condition
{16) changes to

o0

f d9 Im «(9) -

to

49
P A s > /6 31)

It is “more difficult” to break this condition, but it can also be violated for a large
enough value of Im a(¢), so that the branch point J = «, emerges on the physical sheet.
However, with increasing (—¢) the branch point with trajectory a,(¢) will be dominant.

4. The behaviour of the trajectory of two-reggeon branch point under particular parametriza-
tion of Regge pole trajectories

Suppose that only one threshold branch point at ¢ = 4m? contributes to a Regge
trajectory. If this trajectory behaves asymptotically as (—1)’, then its simplest para-
metrization is

w(t) = A—-y(1—-1), (32)

where we put, for simplicity, 2m = 1.

Trajectories of the type (32) are of interest as regards their use in model amplitudes,
€. g. in the dual analytic models [6].

The extremum condition for B,(x,, x—~x,)

K [14+ (=52 7" = (e—xy) [1+%3]" (33)

is naturally satisfied at x; = /2. But the second derivative at this point
2

a 2
PP 73 Ba(K1s K=Kk =nj2 = —2v (1+ )[2+(V - r?] (34)
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is negative for all x if v > 1/2. If v < 1/2, then the second derivative becomes positive at

4

2> k= . 35

* *x 1-2v (%)

Consequently, the brach point J = a,(¢) emerges at t < —kg. To illustrate this, let v = 1 /3.
Then

—_‘_t 291/3 - _—'——i 211/3

& () = 2l—l—y|:1+ (T —C(t)) ] —v[1+ (7 +C(t)) ] , (36)

where

¢ ¢ 7““— 1/3 ¢ t—z‘_- 1/3y1/2
C(t)={—z—%—[“5—"z%+\/7+§%] "[—3*“‘17" ‘;1‘“*'717] } .

(37

The function {(¢) has square root branch points at ¢t = 0 and 7 = —12, as well as
a third-order branch point at infinity. The trajectory x,(¢) has third-order branch points
on the physical sheet at 1 = 0 and ¢t = c0. When ¢t — o

(0 = Yo

&) = a(f)+2(0)—1 + %(—o“”. (38)

In Fig. 3 we show the behaviour of B,(x;,x—k,) when v = }, A = y = 1 in trajec-
tory (32). The behaviour of the trajectories a(t), a,(¢) and a,(¢) in this case is represented
in Fig. 4.

We consider two more modifications of expression (32). Let

a(t) = A—y(1 =)=y, Jt,—t, v <12 3%

In this case the reconstruction of the J-plane will be the same as for the expression (32).
If the trajectory has a linear term,

oft) = A—p(1 -ty +bt, v <1/2 (40)
then for a sufficiently large value of b, namely, for

v(1—2v)*""
Q-vy3-2n’

by = 41)
only the branch point a,(r) will be on the physical sheet of the J-surface. For small b,
when (41) is violated, the branch point J = x,(t) will be dominant at x > k. But at
K > K > Kk the branch point with trajectory o,(¢) will again be dominant. The values of
xx and ky are defined, respectively, as a smaller and a larger root of the equation

(1= 2v)kE = 4b(1 +K2/4)* 7" +2. (42)
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(5, 0%¢;,% = %¢;)

—-4.0 1 It ] 1 1 1 L | 1 |

2w, /(x/2)

Fig. 3. The behaviour of 8,(%,, %#—#) in the case when the pole trajectory is defined by the expression
(32) with » = 1/3, A=y =1

Fig. 4. The motion of the branch points x,(t) and «,(¢) when the pole moves according to (32) with v = 1/3,
A=y=1
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Fig. 3. The behaviour of (%, x—,) in the case when the pole trajectory is defined by the expression
@32) with v = 1/3, 1 =7 =1

Fig. 4. The motion of the branch points «,(r) and %,(s) when the pole moves according to (32) with » = 1/3,
2, = ‘;l = I
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5. Multiple rescatterings

It is not difficult to generalize the results obtained above to the case of n-reggeon
exchanges. Let us represent the expression (4) for f, in the form

Bu(Kss oos k) = Ba(to =1y, K)+ By a(Kzs ooy Ky—y),

where

For B,(r; —ky, k) to have a maximum at x, = 7,/2, the conditions (11), (12), (16)
must be satisfied. Then the integral over x; in (2) will be asymptotically saturated by the
contribution of the saddle point k; = 7,/2, and we must find saddle points of the func-
tions

T K T3—K T3—K
Bn ('52 ’ _2% s K35 00y 72/2) = ﬂS( 2 2 - 2 ’ Kz) +ﬁn—3(K3’ R K""‘l)’

2 72
where
n~1
Ty=K— Y Kp
i=3

Ta—Ky T3—K T3 — K5\
/33(32 2, 32 2,"2)"‘2‘1(“(32 z))‘*‘“("‘g)-

If the behaviour of the trajectory «(¢) and the value of 75 are such that the condition
«'(—13/9) > (213/9)a"(~13/9), 43)

is satisfied, then the maximum of B3((z3—K,)/2, (13 —%2)/2; k,) in the variable x,, will
be at (t3—kK,)[2, i. €. at kK, = 1,3/3.

Applying further the same arguments, we come to the conclusion that the main
contribution to the integral over k,_; is given by the maximum of the function

. - 2
8. K—Ky_y ’ ...,K Ky~1 k)= (=D - K=Ky +a(—K2_)).
n—-1 n—1 n-1

This expression has a maximum at k,.; = k/n, if kK = V=1 is such that

a'(t/n?) > (—2t[n®) &« (¢[n?). 44

When the dispersion relation (13) is taken into account, condition (44) transforms to

3+3t/n?

JdS Im «(8)

to
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The conditions (12) and (16) obtained above are particular cases of the conditions
(44) and (45), respectively. We see from the latter conditions that the kinematic region of ¢,
where the normal n-reggeon branch point with trajectory (7) always dominates, is defined
by the value of a single reggeon momentum. Therefore this region increases ~ n? with
increasing number of reggeons, and the branch point at J = «,(r) dominates at least at
—1 < W tyf3.
If parametrization (32) is valid for a pole trajectory, it is then easy to show that for
v < 1/2 a reconstruction of the J-plane occurs at

t = —n’ki/d = —n?[(1-2v), (46)

where kg defines the critical point for a two-reggeon exchange.
The trajectory &,(t) has properties similar to those of «,(¢). The expression for a,(f)
is rather complicated. But one can show that as t » —o0

%,(1) = a()+(n—1) («(0)-1), (47)

which is a generalization of (30).

6. Conclusions

The analysis carried out above has shown that if Regge pole trajectories are linear
enough, then we have the classical picture of muitiple reggeon exchanges, where the mo-
mentum is uniformly distributed between all reggeons. But when the nonlinearity of trajec-
tories is great, asymmetry in the momentum distribution can occur, this asymmetry
increases with momentum and as 7 — —oo the entire momentum passing through
a single reggeon only.

As has been shown above, the properties of n-reggeon branch points depend to a large
extent on the asymptotic behaviour of Regge pole trajectories. If pole trajectories rise
asymptotically slower than [t|1/2, then a new type of branch points will always be dominant
at sufficiently large (—¢). The reason for this can be explained as follows. Let us consider
the exchange of several reggeons with trajectories «(t) and oz(O) 1. Then there always

exists such a distribution of the transferred momentum v —f between all reggeons that
n

3, [o®)-1] > at)-1,

with equality e. g. for
th =1t t3ts..=0.
Therefore the branch points can not be situated (at ¢ < 0) to the left of the poles. But if
a(t) ~ y(—1)’, v < 1/2, then
o (f) = —ny(—t/n®)" = ' ") < o),
1. e. the normal branch points go to the left of the pole. Before this happens, a new branch

point a,(r) emerges, therefore, on the physical sheet of the J-surface. This branch point
is always placed to the right of the Regge pole and approaches it asymptotically.
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In conclusion we also note that the sum of the contributions of a Regge pole and the
rescattering on it behaves in different ways for various asymptotic behaviours of the Régge
trajectory. If a(r) = 1+a't, then

z : 1
M(S, :) = m Mn(sa t)
n= 1

s—-a’t/2 ~2a'tf3
~ s 4 (1) — + () —— + ... |,
Ir In“s

$IN

i. e. at t < 0 each next term of the sum rises faster with s than the foregoing ones. But if
a(t) = 1+y[(4m*)" —(4m? ~1)'], where v < 1/2, then at rather large (—¢) (of course, ¢ is
such that l7fs| < 1)

. 5,(1 3,(t
M(s, £) ~ s 14 f'ii_(») + <P22() + .,
Ins In®s

and the expansion in n-reggeon exchanges will make sense for large momentum transfer.
Thus, taking the nonlinearity of Regge trajectories into account allows one to extend the
range of applicability of reggeon calculus.

We thank P. I. Fomin for his interest in this work.

APPENDIX

We show here that at kK > Kk, when the branch point at J = a,(¢) is dominant, the
normal branch point with trajectory a,(f) continues to contribute to the amplitude, i. e.
it remains on the physical sheet of the J-surface. For this purpose we investigate the
character of the asymptotics of M,(s, t) at k near xy.

At k < kg the expression (8), with the expansion (18) taken into account, has the

form
o K K
M,(s,t) ~ & 1/2 exp {é [ﬁz (3 , E) —-2]} I(s, 1), (A1)

where

o

I(s, 1) = J- dA exp {5 [% b,(x)4* + Zl;b,,(x)A“]} . (A.2)

- a0

Using the formula (3.323.3) of [7], we obtain

3b 12
I(s, 1) = ( b 2((:))> €K, /4(2), (A.3)
4
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where K,,4(2) is the Bessel function of the imaginary argument, and
z = 3EbI(K)/4b(K). (A4
Since at z —» o
Kia(2) ~ e7%)\/z,
then at Eb2(k) » 1 we have I(s, t) ~1/\/ —Eb,(x) and thus
My(s, 1) ~ s Yln s, (A.5)
When z -0
Kyja(2) ~ 2% I(s, 8) ~ E7H4
Therefore, in the region of x close to kg, where &b3i(k) < |
My(s, ) ~ 2O~ (In 5)*/%, (A.6)

Suppose that x has passed through the critical point -kx. Then, according to (19),
b,(x) changes sign from minus to plus, and we must substitute z — ze?’* in (A.3). In this
case as z — oo (with the formulae (8.476.5) and (8.451.5,6) taken into account from [7])

. T T
K1/4(2e2'n) -4 _i J'—— ez+ \/""‘ e z.
z 2z

I(s, 1) ~ &** \/47z/§b2(1<) +\/27t/§b2(x) . (A7)

Substituting (A.7) into (A.1), we see that the second term of (A.7) corresponds to the
contribution of the branch point at J = «,(?), i. . this branch point remains on the physical
sheet after the reconstruction of the J-plane. The first term in (A.7) corresponds to an
anomalous branch point with trajectory (20), the function &(r) at k ~ x being expressed
through b,(x) and b,(x) by (23). So at s » o0 and k > Ky

Consequently,

My(s, ) ~ 27 VIn s+£(1)s2O Yin s, (A.8)

where f(¢) is some function of ¢.
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