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TREATMENT OF THE TIME-DEPENDENT MULTI-LEVEL
SYSTEM IN QUANTUM MECHANICS ON THE BASIS OF A NEW
METHOD OF CALCULATION

By E. SCHMUTZER
Sektion Physik der Friedrich-Schiller-Universitit, Jena*
( Received February 7, 1977)

As a consequence of a new foundation of quantum theory, developed by us recently,
a new method of calculation for treating time-dependent quantum mechanical problems
evolved. Here this method is applied to a multi-level system under time-dependent influences.
After presenting the general features of the method the formalism is applied to a 2-level
system.

1. New time-dependent method of calculation

Recently [1, 2] we presented a new foundation of quantum theory. As a consequence
we proposed a new time-dependent method of calculation, the main features of which
will be repeated here.

A time-dependent quantum mechanical system may be described by the Schrddinger
equation

oY
ih — = H(OY. 1
ih— ® (1)
The wave function ¥ is according to
¥ =3 5,18, )

expanded with respect to the time-dependent eigenfunctions ¢, obeying the time-dependent
eigenvalue equation

H¢a’ = ha¢o" (3)

where h, are the time-dependent eigenvalues (in the above quoted papers we denoted
@, = 930)'
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Orthonormality and completeness read
a) [@¥¢,dq=3,, b) Y 6;(d. 08,1 =04 —9. 4
Hence from the normalization of the wave function we obtain

Y58, = 1. ®)

Inserting the Fourier expansion (2) into (1) and using (4a) we find the following infinite
system of differential equations for the coefficients S,:

1
S,— 7 h,S,+ Z S;Pus = 0, (6)

-4

where

J ¢: ;Sta = ‘P:n' (7)

For solving (6) we need the time-dependent eigenvalues 4, and the corresponding time-
dependent eigenfunctions ¢,, i.e. we have to solve the eigenvalue problem (3).

For this purpose we decompose the Hamiltonian into a time-independent term and
a time-dependent term:

H = H°+H'(t) ®

without any restriction concerning the order of magnitude of the contribution. Similarly
we decompose

h, = E,+h,, ®
where the constant eigenvalues E, are determined from
H%, = E,x, (10

We assume that this stationary problem has already been solved and that the time-inde-
pendent eigenfunctions x, are orthonormal and complete:

a) [ 2exudq = 055 b) Ealxi‘(q’)xa(q) = (¢ —q). (1)

Let us now use the following expansion
@, = ;cvz(‘)XA- 12)
Orthonormality and completeness of both sets of eigenfunctions lead to the relations

a) ; c:).cml = 5;“" b) ; croclp. = 6[10‘ (13)
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Furthermore, from (7) we find
a) @ = %czzévz, b) ¢, = gcm%v- (14)
Inserting (12) into (3) and using the orthonormality (11a) we obtain the following infinite
linear and homogeneous system of equations for the expansion coefficients c,;:
;Cvz[éaA(EA—Ev)"FHaz—'h;‘saz] =0, (15)
where
H,, = [ x3H':dq = <EJH'E;) = Hj,. (16)
Assuming that the convergence properties are fulfilled, the secular equation
det |H,;+0,,(E;~E,—h))| = 0 a7

for the eigenvalue contributions A, follows from (15).
For the purpose of comparison it is useful to present the situation in Dirac’s perturba-
tion theory: In this method, using the above introduced symbols, the Fourier expansion

iEut
Y o Z d®x, = z D (De # y,, (18)
” »
where the conditions
YDiD, =Y did, =1 (19
u n

hold, leads to the system of differential equations

. 1 1
d,~ 7 d,E,— 7 Z d,H,, =0, (20)

or because of the relation

_ Eut
d,=De & €3Y)
to
. 1 3 Eu-Eox
D,—- m D et H,, =0, 22)

The equations (20) or (22) are the counterparts of our system of differential equations (6).

2. Matrix elements, transition probability, probability of presence and initial conditions

The physical background of Dirac’s perturbation theory is the stationary system which
is affected by a (relatively weak) time-dependent perturbation during a time interval
(this basis also corresponds to the ideas of the S-matrix theory). Therefore the matrix
elements are defined with respect to the Fourier expansion (18).
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For instance, the matrix elements of the dipole moment follow from the expectation

value
- - 1 -
J Y*r¥Pdg = E dyd, j xarpdq = — E dyd,m,, (23)
e
’RY By

-

m,, = e 1irudq. (24)

in the form of

Let us take as another example the transition probabilities for the transition from the
initial state ¥ ;,1,— o = x; before the perturbation to the final state x, after the perturbation:

Wiy = (2 ll’(n’))]2 = ‘;Dw);z = Z S:(i)sx(i)c:).cxl' (25)

According to the intcrpretation of our foundation of quantum theory in the general case
of a time-dependent system, on principle an adiabatic process takes place because of the
temporal development of the time-dependent eigenfunctions. Beyond that such'a system,
e.g. the time-dependent levels, can of course be tested by time-dependent test methods,
for instance by means of radiation, similarly to the methods of traditional quantum physics
but here on a new level.

As a logical consequence this point of view implies referring to the Fourier
expansion (2),

Taking again the example of the matrix elements of the dipole moment we are led
to the formula

M, = ¢f $i7d.dq (26)
obtained by considering the expectation value (23) in another decomposition, namely

—_— - 1 .
PrrPdg = E SiS, j $rrddg = — E SESM,,,. @n
€

H,v (24

The two kinds of matrix elements are connected by
M w = Z c:ccviglal’ (28)
a,i

Consequently, the probability of presence (Aufenthaltswahrscheinlichkeit) of a system,
which started from the (time-dependent) initial state ¥ )= = @t = 0), in the (time-
-dependent) final state ¢,, where according to our conception the temporal influence is
permanently present as a rule, has to be defined by

Ww) = t(¢;., 'P(i)){z = tS).(i)lz' (29)
The above fixation .of the initial state, namely

Y=o = &t = 0)
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leads us, if we furthermore assume, that H'(t = 0) = 0 may be valid, to the coincidence
Gt =0) = x,, ie. co(t =0)=3d,; and St =0) =3, (30)

Using these results from (15) follows
H,(t = 0) = hy(t = 0)J,, = 0. (31)

The choice of the transition probability (25) or of the probability of presence (29) depends
on the concrete experiment being performed.

3. Application to an N-level system

In Section 1 we presented the theory for the general case of an infinite-dimensional
Hilbert space. In practical cases often essential information can already be gained, if
a finite-dimensional space (N-level system with N = 2, 3...) is considered. According to
our theory in the case of a time-dependent Hamiltonian describing the system, the eigen-
values must be calculated from the secular equation (17) being an algebraic equation of
degree N for the quantities h,. Thus we obtain the N roots hi,, with a=1,2,.., N
for each value of v = 1;2, ... ,N. This set of N? values reduces to N values, if we take
into account that in the special case of time-independency the correspondence

h,— E, ie. hi—0 (32)

has to be valid, presupposed that degeneracies don’t occur (Fig. 1).
According to (15) for a fixed eigenvalue we find a fixed set of coefficients ¢,, and there-
fore, according to (12), the corresponding eigenfunction. The fact why N? roots appear

By ———F =N

Exx; 7 =

Enx,

Fig. 1

can be explained as a result of an admissible degeneracy, the maximal degree of which
is determined according to the situation mentioned above.

The shift of the levels according te Fig. 1 is a direct consequence of our basic ideas
concerning the time-dependent behaviour of quantum systems. If there is any degeneracy,
we have to expect a splitting of the spectral lines. This-effect, the nature of which is quite
different, is usually called “dynamical Stark effect” (compare [3]).

To present our method in detail, we refer to the special case of a 2-level system in the
following sections.
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4. Eigenvalue problem of the 2-level system.

With a periodic time inflience the 2-level problem occurs in different fields of physics
(magnetic nuclear resonance, non-linear optics, etc.). Therefore a voluminous literature
exists, particularly because the problem has not been exactly solved up to now. Rabi [4]
treated the problem approximately, using the so-called “rotating wave approximation”.
Bloch and Siegert [5] succeeded in an integral equation approach, with the help of which
they could find a better approximation than the “‘rotating wave approximation”. They
predicted the so-called Bloch-Siegert shift. Some new results are contained in a paper
by Shirley [6].

In the following we treat the problem on the basis of our theory.

According to our previous conventions let us begin with the nondegenerate 2-level
system:

212 Ey, yo > E, (A4E=E,-E; >0)
The equation (12) reads
a) @, = cpx1+Cia)as D) @2 = Cai)a+Ca2)2s (33)
while (15) takes the form

¢ (Hyy—hy)+eHyp, =0

t I, 34
¢y HY+ep(Hyy+AE—hy) = 0 system (34)
and

¢39(Hyy—AE—h3)+cz5H 5 =

0
system IL 35
a1 HYz+coa(Hzp—h3) = 0 } y (33)

The secular equations of both systems lead to the time-dependent eigenvalue contributions

i=1 [H11+H22+AE“'\/(H11“sz—AE)2+4‘H1212], (36)

Y =3 [H, +Hyy—AE+~/(H,—Hypy— AEY +4|H ] (37)

which fulfill the condition (32).
For the following it is convenient to introduce the quantity

C=C*= A}[HZZ—HM+AE-—\/(H11—sz—-AE)2+4|H12|2]. (38)
Solving the systems of equations I and II we find

C
a) ¢ =¢C1—, D) ¢33 = —C3—5> (39)
12 11 le 21 22 Hfz

with the help of which the time-dependent eigenfunctions (33) take the form

Cc

C
a) ¢ =cyy (X1+ 1_11—2)(2>’ b) &, = ca (Xz" H—Tzh)- (40)
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Furthermore, from the relations (13) we obtain

aj) Ic“iz = ;sz‘rz = -, Le. b)) ey, = eyl (41)

After some short calculations one straightforwardly finds that the eigenfunctions (40)
fulfill the eigenvalue equation (3) and the orthonormality (4a).
From (2) we notice that the phase factor of the eigenfunction can be chosen arbitrarily

without any restriction, because it can be absorbed in the coefficients S,. Therefore for
simplicity we put

1 . C
a) ¢ = Cyy = Co = - /na—,:;;,»C,«f e by ¢y =¢q E—— R
- 12
b+
\/ \[11232
C
C) ¢y = —Cog i = -ty (42}
1 0 le i

5. System of differential equations for the Fourier coefficients of the 2-level system

Let us first calculate the quantities (7) from (40):
a) @i = Colot+Ciafia  b) gy = —Cofla+ 260
€) @i = —Cp¢a+Coliy d) gaa = colot il (43)
From these results we get
P11 = 9"’2:2- (44)
Furthermore, we realize that the condition (7) is fulfilled:

a) g = _‘!'Tn b) ¢, = “(/jxs C) ¢aa = '“(ffz' (43)

Expressing the coefficienis ¢,, by inecans of (42) we find

L 20 d 1 H,, d I (46)
o= b © s s e s
PTG T Y dn(HY |
d{ C
Tz = —5 <‘*> 47
dt (2

For the 2-level system from (6) we obtain the system of differential equations

. h, . e . h, « *
a) S;— m Si+¢uSi+7,25, =0, b)) S,- l.Tsz‘f'%sz—‘Frsz =0 (48)
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for the coefficients So. The quantities (36), (37) as well as (46), (47) should be inserted.
From (48) we conclude that the condition (5)

StS,+583S, =1 (49)
is fulfilled.
To solve the system (48) we rearrange (48a)
1], h,
Sy == — 18— S +e,S, (50)
@12 ih |

and substitute in (48b), the result being

v o [hi+hy ¢ h hy (¢
Sx’“ss[”}‘l?ﬁ‘“z'*‘(p—]z]"'sx[(:”n ‘Pugii““‘l—‘*‘—](&‘z*‘@n)

P12 ¢z ih i \g.2
h, hyh,
~ P11 Fx +leulP+lent =0 (51

For mathematical reasons it is convenient to pass over to the new coefficients s, defined-by

S, = s5,€", (52)
where
t
- : hy -
a) 11 = Py — e dt+¥i0. b) J2 = ipf — dH—xzo
1=0 2o
(xe = X20—X10) (53)
and because of (49)
sfs\1+s§s2 =1 (53¢)

is valid. Under these conditions the system (48) takes the much simpler form
a) §, = _Sz%zei(}z—}.)’ b) 5, = wafze““’?’_;", (54)
while instead of (51) we obtain
S1+5 l:ﬁ“l—l —2¢,— (Eﬁjl +5@i2l? = 0. (55)
ih P12
For comparison with Dirac’s method it is useful to apply (22) to the 2-level system. We

AE
find (Aw = —)
h

a) D, -—A—H”D+ !

1 1
3 T Hi D™, b) D, = m HY;D """ + 77, H22Da, (56)
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where
D{D,+D3D, =1, (56¢)
and by elimination of D, the differential equation
N H D
D1+ ‘_DI[H11+H22+Awh+ih‘_‘l‘z]‘— ; [Hllez |H1212
h Hy, h

ih . .
- E*‘(Honz“HnHu)"'Aa)hHu] =0 (57
12

for D, as a counterpart to our result (55). In concrete cases of application it has to be
decided whether our method using (55) or Dirac’s method using (57) is of greater ad-
vantage.

Proceeding this section we notice the relationships between Dirac’s coefficients D,
and our coefficients S,:

E_l_t C lEzt C
a) D‘ = Coe i (Sl— TR S2) N b) Dz = COe ﬁ (Sz"" pe— S ) (58)
HIZ HIZ

resp.

- & C - L c
a) Sl = (g€ & D1 + Trk e—ldmt ’ b) Sz = Col i D2 ——— eldthl . (59)
H7Y, Hy,

The initial conditions (30) take the form
a) Dit=0=1, b) D,(t=0=0 (60)
resp.

a) S;(t=0)=cot=0)=1, b) Sy(t=0)= —cot =0) (_(-:—) =0. (61)

For the transition probabilities (25) resp. (29) we find

c? SIS, S3S
Mam = IDZ(I)IZ B C(z) [lsz{z-i- {H12§2 ISI‘Z+C<I;T22 * f;ul)J 2
resp.
W2(1) = |Sz(1)f2- (63)

6. Quantum mechanical system under the influence of an electromagnetic wave

Up tonow the above theory was developed without taking into consideration a specified
time-dependency. In this section we treat the case of an electromagnetic wave, described by

A = Ay sin (fr—ot), (64
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where
A+ = 2, EOE = 0 (Coulomb gauge), (65)

which acts on a quantum particle. Including the interaction in a rather general case the
Hamiltonian is given by

1 (2 e=) s 1 o [+ e- ,
H=_—{(P—-4) +V+ué| B+ Ex|{P—-4 (66)
2mg c 2mgc c

(m, mass, e electric charge, ¢ spin vector, u magnetic moment). If we assume that the
potential energy V = eg is time-independent, according to the decomposition (8) we are
led to the identification

1

H® = S P2yv, (67)
4]
H'= Hp+HY+Hg, (68)
where
272
e - pRe e A4
a) Hp= — 5 (PA+AP), b) Hy=—,
Moc 2mge
" -l = 1 - - € -
¢) Hs= s B-i—2 Ex{P—-4}]. (69)
mge ¢
Inserting the expression (64) we find
HS. = ae +a*e™ ', (70)
where
= o -Ep, a1
2mgcei
Further we obtain
8222 inae 4
HY = o :2 sin? (kr — wf) (72)
0O
and
- . - e - -—
Hy = ud [k x Ag cos (kr —wt)— 5 Ao x grad ¢ sin (kr —wt)
2mye
@ -~ - -1
+ Y {—grad o+ - Ag cos (kr—-wt)} X P]. 37
o .
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Passing over to the dipole approximation the matrix elements (16) take the form

Hp,, = {E,HB|E,> = v,,sin ot, (74)
where
ed,h
Dyg = — f 1 grad x,dq = v}, (75)
imge
Further results are
Ky |
Hype = e 8,4 SIn° wt (76)
and
- e -
Hg,, = pé [k % Agdyq COS W+ 5 Sin wtdg x Jx: grad @y,dg
2mge
R % grad d gt 2 cos wid * orad y,d an
- — rad ¢ x gra 08 wtdy x Ta .
2m0ci Xn g ‘P g XU q 2m0(.‘2i o Xu g Xa q
7. A special model
7.1. General

To study some features of the theory pointed out above we consider the following
special case which often is applied in experimental physics as a model:

a) H,;, =0, b) H,, =0 (no permanent moments),

¢) H,, = vsinwt = vge’sinwt (v = const). (78)

Hence from (38, (46) and (47) we find

ha —
c=2 [1—\/1+4V02 sin? wt] Vo = 2o > (79)
2 hdw
Voe*w cos wt
a) ¢,,=0, b) ¢,= £ (80)

1+4VEsin? ot

In the case of an ¢lectromagnetic wave the parameter ¥, has the following physical meaning

(1 dipole moment, E, wave amplitude, @ wave frequency).
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Under these circumstances from (55) and (57) there result the differential equations

.. —— 8V2w sin wt cos wt
sl-}-sl[idw\/1+4V§sm2wt+wtanwt+ o

1+4V{ sin? ot
. Viw? cos® wt
S =
Y (14+4V¢ sin? 1)

@81

and

ve sin? wt

D, +D,[idwo—w cot wt]+D, o =0. (82)

7.2. Weak intensity (V2 < 1)

This case can be treated in different ways: First, we can immediately apply the perfect
formulae from literature presenting Dirac’s perturbation theory. In first order one has
to perform the integration

t
i* [ idot
Dyyy = - W sin wtedt (83)
)
and then finds from (62)
2
v
Wy = T -—O(Aco)z]z [30® +(4w)* + {w* — (4w)?} cos 20t
— 2w — Aw) cos (w + dw)t —2a(w + Aw) cos (0 — Aw)t] (84)
and further near resonance (p = w—A4w)
ve ., (ot
W2(1)|res = h-fz_z SInZ <?> . (85)

Second, we can also approach this problem, starting from equation (81) which leads to
the differential equation

s1+5 [ido+w tan wt] +s,Vio? cos? wt = 0 (86)
with the solutions
5, = S1o+VEsi(t) (s = const), 87
where
Ao ei(w*dw)t el'(a)+Aa))t s10w2 eZiwt e"'Zia)t
sult) = 7<w—Aw - co+Aw) T (2iw(a)+Aw) * 2iw(w— Aw)

t t
+ - ’ 88
w+Adw w—Aw) (88)
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and

o A s o® ei((a+da))t e—i(w—AoJ)t
s, = —iVe i(A+ xo) li__o + 210%7 _ . (89)

w 2 w+dw w—Aw

According to (62) we also find (84).
For comparison we also note down the result for our transition probability (63)

W, VO 10 [w? 4 3(dw)* — {w®~(dw)*} cos 2wt
07 20’ - (4e)T
+24w(w — Aw) cos (w+ dw)t —24w(w + 4w) cos (o — dw)t]. (90)

7.3. Strong intensity (Vo> 1)
In this case our differential equation (81) shows significant advantages in contrast to
(82). Namely, from (81) we get
51 +5,[ido V1 +4VZ sin® ot + o tan ot +2 cot o] = 0. 1)

Integration yields

é = o cos wt e~iij*/l+4Vo7-sin2wtdt_ (92)

sin? wt

Hence from (54a) we find
s, = const. 93)
From (53c) with the aid of this result we can conclude
s; = const, i.e. o=0. 94)
Considering the initial conditions (61) which here take the form
a) s;{(t=0=1 Db)s;¢=0)=0 95
we finally find for this limiting case V, - o
a)s; =1, b)s,=0 (96)

According to (62) and (63) for the transition probabilities we obtain without averaging
straightforwardly

8. Rotating wave approximation

Only for the purpose of illustration let us finally sketch the situation in the “rotating
wave approximation”.

Because of the complications in an exact treating of the equation (82) in contrast to
(78) the following simplified problem is studied:

a) H, =0, b) Hy;; =0, ¢) Hy; = ue = upe™*™ (98)
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In this case the differential equations (56a, b) lead to

. D ; .
8) Dy = —= [“TKE alEsy +e T B Ja” |Ey)],
. D ; .
b) Dy = —- [ OB alE, ) +eT T IOKE,|a " [Ey)). (%9)
i

The next simplifying step consists in setting
(E|la*|Ey> =0, i.e {E)JalE,> =0, (100)

justified by the fact that near resonance (0~ Adw) the underlined terms occur with double
frequency. Under these circumstances the differential equation (57) exhibits constant
coefficients and can be solved in the usual way with the result (‘“rotating wave approxima-
tion” [4]):

4uj . t 4u?
Wity = — e ™ sin? (—i \/92+ ~h—;-)> , (101)
K2 <92 + 0)

Comparing (78) with (98), one states a correspondence between u, and v,. Because of the
neglected terms the relation

03 = 4u} (102)

is valid, as it can be seen from (85) and (101) for the limiting case vy — 0.
The same results follow from our method, taking into account

doh[ [ wE
a) Hy?=u2 b c=_£‘2’__[1_\/1+ __J

dw)*h* |’
ic2C*w C
©) @ =-— ou2 » d) @y, = —i"'(z)w‘u_eint (103)
0 0

and solving the differential equation (55).

This example shows in detail that our method using time-dependent eigenfunctions
works correctly.

Finally we mention that according to the definition (63) of the transition probability
we find

4% C? . t 4u?
Wagsy = ( C2>2 < : 4u3)31n2 (? \/92+ F)' (104)
1+ o°+

2 —— —
(1) 3
uz h?
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The difference of both definitions of the transition probabilities can be learned from

Wiy = o'C*h? 1 for Vi <1

0 u? 0 for V¢ > 1

(near resonance), (105)

I am very grateful to Prof. G. P. Weber and Dr. L. Knoll for many helpful discussions
and advice, to Dr. W. Zimdahl for checking my calculations, and to Prof. M. Pettig and
Dr. B. Schnabel for information on experimental facts.
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