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A NOTE ON THE SOLUTION OF THE EQUATION
guin =5 (8uat Ti8,0) = 0
By L. J. GREGORY AND A. H. KiLoTZ
Department of Applied Mathematics, University of Sydney*
( Received February 4, 1977)

The affine connection of Einstein’s weak and strong unified field theories can be ex-
pressed in terms of the fundamental tensor by solving a system of sixty-four algebraic
equations. In the Einstein-Kaufman theory, there is again a system of sixty-four algebraic
equations but it is shown that the rank of this system is only sixty.

1. Introduction

Mme Tonnelat obtained (Ref. [1]) a general solution of the equation
guv;& = guv,/l"'rua;.gav—rlavgna = Oa (1)
Y

of Einstein’s non-symmetric unified field theory, expressing the components I’ ,fv of the
affine connection in terms of the components g,, of the fundamental tensor and their
first derivatives. Further work (Ref. [2]) on the above theory revealed that it may be more
appropriate to consider first the equation

ggv;l—%(rvgyi.'i'rlguv) = 0. (2)
Since these may be written in the form
gu!’l(Aﬂaf/) = Os (3)
where
4, = Ig,+5 (5T, @
for which
4= 4,5, =0, (5)
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(in Einstein’s and Tonnelat’s notation adopted throughout, a hook denoting the skew
symmetric part), it appears that equation (2) cannot determine I';. However, an explicit
proof of this, namely that the equation (2) considered as an algebraic equation for I",fv
is of rank 60, can be obtained only by following through the Tonnelat solution for the
new equations. The purpose of this note is to sketch such a proof while emphasising the
generality of the Tonnelat method.

2. The Tonnelat method

The general method depends on splitting the equation (2) into forty equations for
the symmetric part I}, of the affine connection and twenty four equations for its skew

symmetric part (a te:;or) I, and solving the latter by purely tensorial technigues. If
we write v

g&\: = huv = hvus guvv = kuv = “kvu, (6)

A", k" respectively, for their tensorial inverses and A, k for their determinants (so that
h < 0 and k > 0) we readily find that

i A i
ry= %MV} +u,, (7

where

uuv,g = hglu:v = I'};kav'{'r‘;ko’u_% Fugyv_% rvgeu’ (8)
A . {
and v are the Christoffel brackets formed from 4,,. Also

r#.,"»e = helr’?} = _Ji ka““@ + Vekﬂv - (u:ekdv - uv“ekcm) + % Fugve - Tli“ Fvgue - "32' Fqkuv’ (9)

where k,,, = k,,, (the cycle sum) (we shall use a similar notation for other three index
quantities, I',,, and u,,,), and 4, is the covariant differentiation operation with respect

to {A} Then
uv

Algebraic equations for Iy, , are obtained from the equations (8) and (9) in a self

Uy = —% F{‘hYL{ and T, = —%k,, (10)

evident way but their solutions relies crucially on the introduction of two linearly inde-
pendent operations. The first is a repeated raising of a covariant index with A*" and lowering

of it with k,,, which is called the “barring” of that index. Thus

Al = kA,
AllG = kg h®P g WA, (11)
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etc. This, in a way, avoids raising indices with k** (which may not éxist, although we can
always write

1
2V

K= ek

afs kuv = % \/’; auvaﬁkaﬂ' (12)

b

Since

\/k = é—a‘”‘“k”vkw,
and
g = h+k+3h"nk, k

nvitoa

it is not difficult to show that

B, k 1 N
Az = — EAQ_ % (g—h—-Kk)4;, (13)
i ) ok —k
= 0’ A;+(1-jHA;,  say, where o = \/— A and j* = g—}— .
1
The second operation is the well known duality one:
<k
AY .. = 3—; Eunagh NP7 A,y .. (14)
We have a useful relation between these, valid for any vector A4;:
2h° i‘}oku(uAv] = - / h hc)ejuga (]5)

the square bracket this time denoting the skew symmetric part and the star referring
(as throughout the sequel) to the pair (uv) only. The barring and starring operations can
be performed on both sides of a tensor equation (the latter, of course, only with respect
to a skew symmetric pair of indices), leading in general to additional equations. There
are some other identities which it is worthwhile to recall in the reduction of the equations
of interest to us. These are

e aph™ h?7 = a"”ﬂhwhp\;, (16)

and

Erimf aﬁ,n (035)’5" 56575’1)’

£ = 28181~ 8150), By 8Tt = 3150, an

azﬂ v

It follows now from the equations (8) and (9) that

uvo hd[rulekav_rvﬂakcu] 2"’61[1—'92 ukav rgivkan] Fuvo+r 2

v,
= 3 ko + VK + 5 [C g+ 0Kk ) = T B+ 07K 0k 0,01, (18)
= Iﬂ = r

where fw Wi F,‘AQ i the bars not shifting, of course, in the cyclic summation.
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The quantities in the square brackets on the left hand side of the equation (18) and T
have been calculated in Tonnelat’s paper directly from definitions to give the equation

Tiye =200 o+ Ty = =3 Kung+ Yok =3 (1 ="k
giptRs /7. \/E ) acy AT By
+'£’ h*h (\/k 8pvot—k¢nkm)kglk" _4—' s,uvg).h h ka:’" kaB)'

+ _.'15- [ru(hve + hdlk}.akcv) - ‘rv(hyo + halk].gko,u)]
=K €4yt Wk B A K €440ak™ A3~ 2K A, (19
where

A, =} Rk, T, and B, =4 k"I, .. (20)

3. Calculation of A, & B, and the final equation
Contracting equations (2) with g"* gives
I‘é =38,In/~g —%T,. @n

Using equations (21) and (9) we obtain directly from the definition of B,

k
Be = —% kuvkuva+ag In \/— E +% kuv(rugve"'rvg,ug)"":l'? FQ' (22)

The terms proportional to I'; are absent from the corresponding formula of Mme Tonnelat.
Similarly, contracting equation (18) with £** and substituting from (22), gives

A=~} WP gk, In \/;f- e 3)

We may note that since B, appears in the equation (19) multiplied by \/k, the result which
we are about to write down is still valid when the determinant of k,, vanishes.
We now substitute for 4, and B, into the equation (19) and obtain

rlg,e - Zwrﬂz"»e + Fﬁe’:z = JﬂV’Q + Wt‘y":e’ (24)

~

where
Juve = — 3 kuva + Vakuv +3% wk:va +% wk:vk"kate

j2 2

_(kuv(s; —% \/E euvqakla)ai. In (]2 ‘_wZ) _% (o(grvaak}.a - k:vég)al In ( ;Z(D ) s (25)

and is the same as the corresponding expression of Mme Tonnelat, and

W = % hﬁ.[ksuvearﬁ.'l' kleka[urv]] + % F[uhv]e' (26)

hv,Q
v
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Equation (24) is now in the form in which it can be readily solved by Tonnelat’s method.
The main difference is that previously I'; was known and now it can only be determined,
if at all, from equation (24) itself.

4. Solution of the equation (24)
Let us apply to the equation (24) in succession the star operation, the double bar
operation and the two operations combined. Remembering that

AY = = Ay 2N

and recalling the identity (13) we obtain besides (24) the following additional equations

: * = * -
for the four unknowns I’ uv.e> r v r w2 and I nve

200 o+ Ty ot T = Ty gt Wik s

BY,Q 3414 A av.e
v ~ v v

0Ty o+ Q= =200 5 = Tyt Wi

ot e av.e
@™ Ty o200+ Q205 = T+ Wit (28)
From (24) and (28), we get

(@ +b) ., = Uuy ot Qob—ac)W,, ,+Qwa+bc)W,, ,+aW,,z—bWr:  (29)

u.Q £y BY.0°
where
a=S5w*+j*~2, = 20(3-j%), ¢=2-j3,
and
Use = Qob—ac)J . +(20a+be)J ,’fx,g +atuwg— bJ:};,
is the Tonnelat solution for F“.“ " in the case when I'; = 0.
Since then I'}, is determined by the equations (3) (with 4} = '+) for which

J-gl,=h,g8%,, 30)
it follows that if
g#0 and g¥V,6 =0,
then
U,=h"U,,=0, 31

Unless @ = 0 and b = 0, the Tonnelat solution is unique.
If we now let

Apr = =5y, (32)
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so that
Apa = § by (33)
then
Ao = J;h Euagh™hP A5,
_v 6"’ Eunaph™ WP sy —Tsh,,)
= — ;h Euvech” T,
or
—2wA,’; o = 2k h 0,0 (34)
Also
Apve = Kooh Yk,,,h"“A,M
= 1 ksh®k gh* (T b, — T )
= 1 ksh®k, I~ % kosh®'k,, T,
= 2 bk, kor Doy (35)
Hence

* T =
uva 2(‘0‘4;” Q+AMVV,G = Wy,

v

Consequently, equation (29) is equivalent to
(@ +B) e = Up ot 5@+ by,

from which I', cannot be determined.
In conclusion, we note that the above method of solution applies to any equation with
scalar coefficients a, f5, v, §, of the form

“Aﬂ\a+ﬁAMVQ+VAuve+()AuVE = Wise

v

REFERENCES

M. A. Tonnelat, J. Phys. Rad. 16, 21 (1955).
A. H. Klotz, G. K. Russell, Acta Phys. Pol. 134, 579 (1973).



