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GENERALIZED EINSTEIN-KAUFMAN THEORY AND THE
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Although the Russell-Klotz electromagnetic tensor produced both a Lorentz force
term in the equations of motion and a modified Coulomb law between two charges, the two
results were at variance. Another tensor is introduced which provides satisfactory results
and suggests the introduction of a non-Maxwellian electromagnetic theory. A third order
weak field expansion is developed to examine the Russell-Klotz tensor.

1. Introduction

In a series of publications (Refs {1-4]), G. K. Russell and one of the present authors
considered the general structure of the non-symmetric unified field theory and the equations
of motion resulting from the integration of the field equations. It was shown (Ref. [2])
that if the electromagnetic field tensor is defined as

fuv = *gaﬁgpy;aﬂ (1)
T

(Ref. [1]) in Einstein’s notation (Ref. [5]), the objection (e.g. Ref. [6]) that the equations
of motion do not contain a Lorentz force in the expected approximation is not valid.
Indeed, Russell and Klotz succeeded in obtaining such a force using the technique of
Infeld (Ref. [6]).

The unsatisfactory nature of some the previous results compels us to once more
take up the question of the electromagnetic field identification. In particular, the Russell-
Klotz identification (1) leads to a Coulomb force between two spherically symmetric
charges (at rest relative to each other) of the form

12(1 _ &z), @
Fr r
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where m is a constant (presumably, the inertial mass of the particles in question) and r
is the distance between their centres. This is difficult to reconcile with the Lorentz force
between orbiting charges,

i
e +k(r—rp) 3

obtained from the field equations (Ref. [2] and also Ref. [7]). Moreover, the tensor S
defined by (1) is not simply-skew-symmetric. Although Russell disagrees (Ref. [8]), we
regard this as a serious defect in any attempt to identify f,, with the electromagnetic tensor.
In spite of Einstein’s remark that only “something like a Maxwell field” (Ref. [5]) might
be expected from the generalized theory, the problems raised by trying to interpret any
symmetric part of f,, are too formidable to consider at the present stage of the unified
field theory. On the other hand, we do not wish to upset the equations of motion result
since it restores credibility to the whole of Einstein’s theory. Of course,

*g“ﬂgnvv;uﬁ = —*gaﬁgvg;aﬂ’ (4)
+oe %+

but this is not good enough.

It will be shown below that this difficulty can be very easily overcome. We shall see
also that the dichotomy between the Coulomb and Lorentz forces can be resolved by the
simple expedient of requiring a fixed relation between the compounds of f,, and the
electric (E or D) and magnetic (B or H) vectors (it is well known that the classical theory
allows two possibilities). Finally, we shall consider whether the (modified) Russell-Klotz
field tensor can be expressed as the curl of a field vector.

2. A note on the field equations

It is shown in Ref. [4] that the most general field equations satisfying the principle
of Transposition Invariance (or Hermitian symmetry, with respect to the field tensor g,,

and pseudo-connection U,fv, linearly related to the affine connection I ‘f;,) can be written

in the form
8us(D) =5 118w =3 T8 = 0, O]
R,, =0, ©
and
g¥, =0, M
where
g‘i"f’l(r) = gnv,}.—rzlgo'v—'r‘)’.'vguw ®

is Einstein’s (covariant) derivative, Hermitian in g,, and I ,fv
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Equation (5) can be considered as an algebraic system in the 64 unknowns F,fv. It

is shown elsewhere (Ref. [9]) that this system has rank 60 and a solution
r;, =4a.,-%é.r,, )

where 4, is uniquely defined by the equations

gf:f’)'(d) = 0: A,u = A;’a = 09 (10)
and I', = I'J, is indeterminate. On substituting I'}, the remaining field equations (6) and
(7) become 20 differential equations in the 20 unknowns g,, and I',. (The system is
formally self-consistent, having been derived from a variational principle (Ref. [4]).) The
quantities g,, and I', (which cannot be found by algebraic means) will be considered to
have a physical significance and it is this important respect that Einstein’s unified - field
differs from Schrodinger’s Purely Affine Theory with which it is frequently but wrongly

linked.
It is easily shown that

Ruv(r) = Ruv(d)—'%’(rn,v'—rv,u)’ (11)

so that (as pointed out in Ref. [4]) the equations (5), (6) and (7) are equivalent to the
weak field equations of Einstein and Straus (Ref. [10]) with the connection A,f,, and

Ru:(A) = %(ru,v_rv,u)' (12)

We shall consider later the possibility (contemplated by Einstein soon after his introduction
of General Relativity and also relevant in Weyl’s unified field theory) of regarding R,,(4)

as the electromagnetic field tensor. The vector 4", would then appear as the likely electro-
magnetic (four) vector potential (at least up to a gauge transformation).

3. The electromagnetic tensor

In Relativity there are two distinct formulations of Maxwell’s equations, Firstly, if f,,
is defined by

fii = By, fua = E, (i, ), k) a cyclic permutation of (1, 2, 3),
then
[ =J% fua=0. 13)
On the other hand, if
fi; = E. and fyu = B,
then
P2 =0 funs = tnad” (14)
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Let us now consider a weak field expansion of g, :
Loy = M Heh,+E2q,,+0,+ .., & <& 15
Let also
g = P eH" +62Q" + 34"+ ... (16)

Here 1, is the Minkowski tensor which we will use to raise and lower tensor indices so
that, for example,

O I arn
The relation
g8y = &*"gpu = 0, (18)
then gives
H® = —h", (19)
Q¥ = —q”+h"ht, (20)
A = —am—yhgh "R+ by (1" + g, @1

and so on. It is clearly convenient, and indeed common, to assume that
huy = hy, (22)
when also
oY = ¢'. (23)

Russell’s conclusions concerning the Lorentz force are valid for any skew tensor f,,,
satisfying the conditions
() that, in the order &2

9
=
<

where [] is the D’Alembertian operator, and

() f.v involves second derivatives of g,,.
It is easily seen that both these conditions arve satisfied if we take as the electromagnetic
field tensor

Wy, = —W,, = *gaﬁguyw’ (25)

[e1¥]

the subscripts 0’ denoting, with Einstein, covariant derivatives with respect to the affine
connection A4,

Properties (2) and (f) are also satisfied by the tensor R,(4) (given by relation (12)}
since in view of the e-expansion (15),

i (26)

Bt

R,, =
2’
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and

R‘”.(A) = _Au\‘;a')f_

I

— A gy iot .. 27

where A°% is a symmetric tensor whose exact form (Ref. [10]) is immaterial to our calcula-
tions. The tensor R,, is less complicated than w,,. We shall investigate below the extent

to which these two tensors differ with respect to the e-expansion of g,,. At the moment,
however, we must digress to consider some known exact solutions of the field equations.

4. The electromagnetic tensor and the exact solutions

(i) Static, cylindrical symmetric field.
Using the isothermal form

gﬂ = dlag(—a, -4, —ﬁ9 Y), (28)
Russell and Klotz have shown (Ref. {I1]) that the non-vanishing components of R,, are
Ry3 = ay, R’f = 4, (29)

where a, and a, are arbitrary constants of integration. In either Maxwell’s theory or the
Born-Infeld nonlinear electrodynamic (Ref. [12]), this solution can represent the fields

D=-% H==0, (30)

where ¢ is the charge per unit length along the source at r = 0, and i is the steady current
flowing along it. The weak field equations for the isothermal form have not, as vet,
been solved so that the form of g,, is unknown.

(ii) Static, spherically symmetric field.
A static, spherically symmetric, skew tensor, satisfying the equation

Ry =0, (€1)

has the general form

Ry; = Wsin0, Ry, = f(n), (32)

where W is a constant, and f(r) an arbitrary function of r. Similarly, the components Euy
of the fundamental tensor are given by

g_y_v = dlag(—:x, _ﬂ‘ “ﬁSin2 09 }’)’ gzvs = pSiﬂ 01 g£4 =w, (321)
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with a, B, y, p and w being arbitrary functions of r. The vanishing of w is a sufficient, but
not necessary, condition for the vanishing of fand the same is true of p and W (Refs [13, 14]).
The general solution for

pw# 0

(Ref. [15]) is unfortunately almost unworkable because of its own complexity.
Papapetrou’s solution when p(r) = 0 and w(r) # 0 is (Ref. [13])

. 2m P 1

o " =l-—11, ay={14+—], w=2+—,
r r r
R.. = 2/wY 2/w 33
o r\ o r*\a/’ (3)

(dash denoting differentiation with respect to r, m and /* being constants). According
to (33), both R,, and w,, describe fields of the order r—* and, as Papapetrou himself

observed, cannot represent a simple point charge. This difficulty can be overcome by
identifying
S23

as the electric field. In general,

W
szs =7 ?, (34)

so that, if W is the charge, we obtain the classical Coulomb field. However, R,, appears

as the curl of a vector I', (equation (12)) and this indicates the form (13) rather than (14)
of Maxwell’s electrodynamics. To avoid contradiction, therefore, we are driven to the
conclusion that the electrodynamics arising from the nonsymmetric unified field theory is
that of Born and Infeld for which the field equations for the induction and the intensity
tensors p** and s" respectively are

(\/:—ﬁ p‘w),v = 0 = s;‘n-v.f., (35)

h = determinant of g,,.

5. Some exact relations

Consider the affine connection I‘,f, defined by the equation (5), 4 ,fv given by the equa-
tion (9) and the Ricci tensor R,,:
Ry = —TpyotTuont Tl gy =Tl g, (36)
We have
o

45, =
7 oaxt

In/=g =TI, +5 T
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whence
_gg,x = A:_a,A
and
F&,x“f_:_a,z = % Tea—T o) 37
is thus a tensor. We have already noted the relation (11) between R,iv(l") and R’S'(A)'

In the sequel we shall denote by a semicolon the covariant derivative with respect
to the connection 4},, thus dropping the “zero-indicator” from the equation (25) which
now reads

= *gapgltv;cﬂ' (25)

When necessary, we shall use a stroke to denote the covariant derivative with the connec-
tion I'k,.

It follows immediately from the definition (36) and the equation (37) that
Ru(l) = —Iye= Tl 43 (Tyu =T, (3%)
Because A, vanishes identically, we also have
R, (4) = = A5y (39)
Since
Il = 434 (o=,
and
ri, = 4i, -4 (I\0}+1,0%),
we can readily verify that

uy?

Z;VIV = A:;} G F Aq
and
43, = Il
Also (if R,(I') = 0) it follows that
;'v{o = % (Fv,y'-rp,v)“r;:’FG’
= AZv,a (rv W4 Fu,v)'
Hence we get the exact formula (analogous to the equation (12))

A:V,‘O’ = § ( v y,v) (40)
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In the rest of this work we shall seek to compare the tensor

¢nv = —% R.uvv(A) = rv,y_r

PRY

which satisfies, of course, equations
v =0, (41)

identical in form with one set of Maxwell’s (or Born-Infeld) equations of electrodynamics
with the field tensor w,, defined by the equation (25) and identified by Russell and Klotz
with the electromagnetic tensor. The aim is to calculate the successive terms in the power
series expansion in & of w,, when the fundamental tensor g,, is expanded according to the
equations (14) and (22). We shall use as one of the field equations

v, =G —g*"), =0, (42)
valid both in the generalized unified field theory and in the Einstein-Straus theory.
Since
guv,az_A:agav-A:vgua = 0’ (43)

we get, after a straightforward calculatijon,
Wy = *g“”ggv;uﬁ = *g“ﬁ[/jzaiﬁgﬂ+Agv,,,,g£,+A":vaA§ﬁg€v+A;’,vv %,gue]

+ *g“_ﬂ(A :va ‘é\' - AgvAfiﬁ)gcig‘ (44)

We shall find this formula useful in carrying out the approximations.

6. Auxiliary calculations

Let us assume the e-expansion (15) of g,,, the symmetry condition (22), and that it
induces the following expansion of the components A,’}, of the Einstein-Straus affine con-
nection

4}, = 4;,+edl, + 241+ 240+ ... (45)
0 1 2 3

Equating to zero coefficients of the successive powers of ¢ from the equation (43), we get

4 Z).rlav +4 Zvn;w = 09 (46)
0 0
huv,i._AZ}.nav‘vanpa = 0’ (47)
1
quv,}._A:ar’qv_A:).hav—Agvn;m—dg.vhua = 0’ (48)
2 1 2 i

mnv,l—Azlqav_A:Ahav_Az}.nav—Aquua"Aivhuo”AZvnuo' = Oa (49)
1 2 3 1 2 3
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and so on, although equation (49) is as far as we shall go. The usual method of permuting
the indices cyclically and adding and subtracting the resulting equations gives immediately

45, =0,

(¢}

Agn = % qal(higx,v'*'hv).,u'—h;;v,i) = AZV’
1 1

g 1 ai —
Auv = (mlp,v+n1va.u_muv,i.)> m,, =4¢g v_h g
2 g

i

AZv % nol(quv,l+qiv,u+ qul,v),
2~

AZ\; = %r’aﬁ(nuv&'*‘nivu—"v.ui)a
3—

. s a 4T L
Moy ™= a}.p,v_iialvqau*fvuq}.a é‘lvha’u gvuh}w’

and
A;v = ’?62[% (api.v+"’xiv,u+auv.A)_AZ).QUs'_Aquiw“dgvh;«l]'
3 v v v 1 A S A
Hence,
~——
4;, = edh,+ 240, 4240+ ., (50)
- ) S 2 K
4, = 4L+ i+ ., (51)
™ e 3

is the resuiting expansion of the affine connection. Also, taking into account the equa-
tion (16),

2 3 [ 6
Wir = AL+ 6 (A A5y 85, — 41y 85— A543 + 0]

X [1gy+€h,,+ O(e?)] —[as above with u and v interchanged]}
x {n*" —eh* + 20" + 0(e*)}
= EZ(A Za,ﬂ”o’v + A;v,ﬂ']ya)naﬂ + 83{[(AZa,B + AZBAZm
2v 2> v 1 2v

- Aﬁ[jdza - AgﬂAZg)nqv + A:a,ﬂhav]nap + [(A:v,ﬁ
1“"\'2 ~ 1—2 2y 3

+ A;ﬂA:v - ?éngg’v - 4115;;{121%)71;16 + g:\y,ﬂhuo‘]']aﬂ - (éj%,ﬁr’ua + é‘:va,ﬂnav)haﬁ} + 0(84)' (52)

1—2 v

The equation (9) is insufficient to determine the Einstein-Kaufman connection I’ i\, if A,’}\,
is regarded as given. If, however, we assume an expansion in the e-power series of the
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former of the same pattern as that for Aﬁv (equation (45)), then from the equations (9),
(40) and (51) we. get

FA+%F;0' = Oa
0 o

and

It follows from the latter that there exists a scalar function (of position) ¢ such that
I;u = ¢,;u

and is seems natural to assume that

1A
ri =o.
0

7. The equation g%, = 0

We must consider now the effect of the fast (as distinguished from the expansion in
a small, time-parameter used by Infeld) expansion (15), (50) and (51) on the equation (42)
which, as observed before, is one of the field equations of the generalised non-symmetric
unified field theory. Using equation (16) we have

1 #g% g, (2QX +2 AN+ . ) +e%QY 1A+ ... = 0, (53)

and

5, _—
J*gg. = —In /g = A°,.
2 g gaﬁ,v axy \/ g vo

Also, from the equations (20) and (21),
Qv = qv, (549
and
AL = o+ 3 (07,07 — 1,07 )+ "h g . (55)
Equation (50) enables us to rewrite (53) as
QY+ 8 (A, + 45,0+ ... = 0. (56)
1
Because of (54) we can easily verify that

Ql’:’v,v = —r’vgn’wqga',v = _nvenua(vanaa'*'Aganaa) = '—r]udA:a == 0: (57)
~ v 2V 2~
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since 4, vanishes identically. Because of (57), the result of equating to zero the coefficient
of & in (56), can be written in the form

A%+ h QY +hOY | =0,
or
AV +hQ), =0, (58)
where
h =3 nh.
After some calculation, we conclude from (58) that
Voot A" Bl 145030 = 0. (59)
Here
85 = n""a@.
Another result which is useful in the sequel is as follows. If we define

o
nv?

DZV = r]dﬂnav ;u—A
1 1

and
D/‘.uv = r’laD:va

then, substituting the expression for A4y, in terms of the first derivatives of 4,,,
1

Di.uv = huv,}.—h}.u,v'
Hence

" n*+9"*1")D,;,, = 0.

8. The four-vector potential

Our aim is to extract from the approximate form (52) of the tensor w,,, those terms
which appear as the curl of a vector. The latter can then be considered as the electro-
magnétic four-vector potential if the appropriate identification of w,, is made.

If we write

2 3
Wyy = EW,, +EW,,+ ..,
2 3
then we have from equation (52)

wyv = (A;a,ﬁnov+‘d:v,,8ﬂpa)’?aﬁa
2 zv 2
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and because of the equations (54) and (57) and the known solution of the equation (48)

&€, a

8 —
Q;w,af} - Anv,o'
v 2

~

Aretlot™ =11
X
Thus
Wuv = rlapguv,aﬁ = ZAZV,G’
2 ~ 2v
But, to the order &2,
Blap = A
s 2

because of (50) and (51). Hence, from equation (40) which does not involve approxima-
tions,

[EN

Wiy =
2

(12-"’;#_12—‘#,")' (60)

The expression for w,, from the equation (52) can be written in the form
3

v

[AZv;o - AgaA ﬁv + AfwAZv + Ai‘aAZ@ + r},vn"ﬂ(dgﬂdfw - AﬁﬂAga - AﬁﬁAZe)
3 | 1 2v T 2 1 2V 1 2y T 2~
- naﬂA:ahov,ﬁ - Azaz,ﬁnavhaﬂ + rfﬂava,ﬁu + naﬁ(A:nqav + g:vho‘a),/]] - [V > ll] (61)
2 P ™ 1 - “

And, from the equations (59) and (57)

ava,o‘u + 2']QaA :a,quu + 77654 :B.uCIva = 0 (62)
1 M 1 v

Using this equation and the results of Section 7, we can show, after some straightforward
calculations, that

wuv = 242 Zv.‘a + (haﬁq“,ﬂ),u - (haﬂqau,ﬂ).v + (pdqau),v - (paquv),p
3 v ~ - v -

+ ’?aﬂ[Sqaaf;‘;ﬁ,v - 3qaa?:ﬁ,u + qavA :v,ﬁ + q:zv‘il gﬁ,u
¥ v vy -

+ qavaX:ﬂ,u - qaelzgz,lf - qag‘g:ﬁ.v - qaﬂf:ﬂ.v] = ?v,u - ?u,v + qua (63)
where
P’ = 0745,
1
¢gt = % F;z+ haﬂqag.ﬁ _PGQGW
3 3 v v
and

Q{,’v = n"[...],

is the quantity by which w,, differs from the curl of a (pseudo) vector @,.
3 3
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Thus, although
W;xv = % (Fv,px_ry,v) = ZR”\,(A),
2 2 2

2

w,, is not, in general, the curl of a vector.
3

9. Discussion

The lack of skew-symmetry and the disparity between the Lorentz force and the
Coulomb law casts doubts on the aptness of identifying the Russell-Klotz tensor (1)
as the electromagnetic tensor. The modified tensor, w,, (25), is skew-symmetric but the
Lorentz force and the Coulomb law are still in discord.

It is possible to overcome these difficulties by using R,,(4) as the electromagnetic
tensor whereby the Lorentz force is present and an unmodified Coulomb law is predicted.
However, it is necessary to consider non-Maxwellian theories (for example, the non-
linear theory of Born and Infeld) to ensure suitable representations of the magnetic and
electric fields.

In a future paper, we will use the third order approximations to continue our investiga-
tions of the equations of motion and of the form of the current vector in the generalised
theory.
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