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The thermodynamics of the grand canonical ensemble of MIT bags is studied; the
finite extension of the bags is taken into account as covolume 2 la van der Waals. Due to
this finite extension, proportional to the bag mass, the gas has no ultimate temperature
though the level density is similar to that of the statistical bootstrap model. The bag gas has
a first order phase transition into a quark continuum. Connections to the hydrodynamical
mode! of Landau are outlined.

1. Introduction

The MIT bag model [1] has found considerable success on the one hand by reproducing
fairly well the static properties of baryons and mesons [2] and certain features of the
Pomeron {3] and on the other hand by unifying several features which are at present
believed to characterize the hadronic world as {1, 4] quark and colour confinement, an
exponentially rising level density, linearly rising Regge trajectories and — at least in one
space dimension — some features of dual models. The bag has a thermodynamical analogue,
a bubble filled with a free, to the lowest order of sophistication massless quark gas [1].
Since we think that the treatment of multiparticle production processes within the bag
model will have to rely on thermodynamical and possibly hydrodynamical approaches
we have studied the thermodynamic properties of a gas of bags and its transition to
a quark continuum phase. An earlier attempt to relate the bag model to the hydrodynam-
ical model can be found in Ref. [5]; it is, in our opinion, incomplete.

The basic properties of the bag — bubble analogy are given in Ref. [1] and recalled
in Chapter 2. The bubble reproduces the exponentially rising level density characteristic
for the statistical bootstrap model [6], in addition its volume is specified to be propor-
tional to its mass. We take this into account as excluded volume a la van der Waals in our
treatment of the bag gas. This represents certainly a crude approximation. We simply
argue that two bags which overlap form just a new bag of larger volume and mass, since
the boundaries are by no means rigid. This new bag, formed in a scattering process, needs
not respect the volume-mass proportionality which is derived from a virial theorem
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implying time averaging. Treating it, as we do, in the same way as a static bag is therefore
analogous to a narrow resonance approximation to a scattering amplitude, which may not
be so bad at low energies.

Our bag gas is depicted in Fig. 1a) and its partition function is evaluated in Chapter 3.
It has, due to the finite extension of the bags, no ultimate temperature. It has a phase
transition to a phase depicted in Fig. 1b), a big bag rattling inside the volume V. This
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a) b) c)
Fig. 1. The three phases considered in this paper: a) gas of bags, b) single big bag, ¢) quark continuum

phase is however statistically irrelevant against another system we can make up out of
free quarks, shown in Fig. 1c). It is a configuration where the whole volume is filled with
the quark gas, not respecting the bag boundary conditions. The partition function of this
system is evaluated in Chapter 4. This homogeneous phase wins the statistical competition
at a transition pemperature T, = 1.2T,, where T, is the “Hagedorn temperature”
characterising the level density. The transition is of first order.

The behaviour of the whole system is very reminiscent of a system considered in the
hydrodynamical model of Landau [7]. There it is assumed, that in a high energy collision
of hadrons a kind of prematter is formed which behaves as a free relativistic massless gas;
this system expands according to relativistic hydrodynamics. If the temperature (dpend-
ing on space and time) has decreased to T &~ m,, free hadrons can emerge, which form
the final state of the scattering process. The value m, of the transition temperature
comes from the condition that a gas of hadrons of typical extension m_> ceases to
interact. This picture is quite analogous to the thermodynamic analogue to the bag model
presented here, in the bag model we have the additional bonus, that both phases are made
up out of the same material.

Before we go to the technical developments, we should mention that we are using
Boltzmann statistics throughout, with the only excuse that at the degree of sophistication
of using correct Fermi and Bose statistics more corrections like finite quark masses,
the triality zero condition etc. should be included, going beyond the scope of this more
qualitative presentation.

2. Partition function for a single bag

The thermodynamical properties of a single MIT - bag have been discussed already
in Ref. [1]
The basic ingredients are:
(i) the contents of the bag are free massless quark fields, to be translated to a free massless
relativistic gas,
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(@) from (¥) and the boundary conditions one derives a virial theorem:
m = 4BV
where m is the energy (mass) of the bag and B is the bag constant. For an equilibrium
configuration (V> = V.

(iii) The energy of the empty bag in BV, so 3BV = 3/4 m is the energy of the fields or,
in this context, the gas.

We obtain then for the grand microcanonical partition function

2(m) = LMY omare 22
“(m)—ZZE(@) (2m) (3 1) (2.2)

where d is the degeneracy and

Q(E) = " d3k‘5E k| )83 k 2.3
"()"fH(zn‘f (“Z‘i') (Z ‘) @3

is the noncovariant phase space. We have included the momentum constraint since the
interesting region will be at low m and therefore also small n. For Q, we obtain, using
the method of Lurgat and Mazur [8] the approximation

81 (3/4m)® ~4n?

4./3 (3n)*e "’

Q,(3m) = Q4

Inserting into (2.2) yields after some rearrangement of factorials using Stirlings formula
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-
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n=2
Asymptotically this behaves as
z(m) ~ m~2emTe (2.6)
where T, the analogue to the Hagedorn temperature, is

47—
4Bn?
TO = J 4d . (2-7)

3. Partition function for a gas of bags

We consider now a gas of bags in the grand canonical ensemble and in the thermo-
dynamic limit. The chemical potential is zero, since the number of bags is not fixed, bags
can coalesce and separate freely. We take into account the volume of the bags in a van der
Waals type of way by using

m;
V- V.= V— —_ 3.1
E i 1B (3.1)
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as the phase volume. Lorentz contraction has been taken into account in the actual
calculation in an iterative way, since the use of

” m; m 39

instead od (3.1) prohibits any of the calculations given below. The grand canonical
partition function reads then (using (3.1))

1 - d*p; e m; \"
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Using the abbreviation

(m;, T) = In | =( )m"TZ iy (m"> 3.4
0 = In| z(m) — — s .
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this can be rewritten as

n

Z(T, V) = Z J‘H dm; exp {Z @(m;, T)+nln <V—Z %>+n—nln n}. 3.5)

i=
The maximum of the integrand with respect to the m1; is determined by

d n {
A B (3.6)

1

om,

So — apart from the possibility of having different solutions of dg/dm = const — the

maximum occurs at equal masses m; = m (the alternative of two solutions is discussed

in the appendix). We do the m; integration in (3.5) by expanding the exponent around

the maximum up to second order in (m;—m), and treating the exponential as a gaussian.
The matrix of second derivatives of the exponent is

> qp(m, T)

My = 6, —

/ om?
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and the gaussian integration yields a factor
NS ,
T (3.8)
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The determinant can be evaluated to give

A2 n—1 2
o p(m, T) 0“p(m, T) 1
det(—M,;))=| - ———— - )
et (=My) < om* ) oms T (4BV _)2 (39)
— —m
n
which has the correct sign if
o*q(m, T)
——s— <0 31
6m2 ( O)
as a condition for a maximuym.
In the thermodynamic limit
no
n—o, Vow, = 7 finite (3.11)
we obtain then from (3.5), (3.8) and (3.9)
lim - In Z(T, V) (m, T)—In | o A NPT (3.12)
im —In , V) = max , Ty—In - — n .
PR R ® T iB 2 Y (m, T)
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Fig 2. Lim 71n Z(T, V) as a function of To/T; curve A: for bag gas without Lorentz contraction,

curve B: for bag gas with Lorentz contraction, curve C: for the quark continuum
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It is convenient to get all the arguments of logarithms dimensionless by separating a term

4B
In—; from ¢(m, t):
TO

4B
p(m, T) =1n —5 +¢(m, T) (3.13)
To

- . 4B |
so that ¢(m, T} is a function of m/T, and TT, alone and to transfer In — into the second
o]
term and In 1/7, into the last term in the exponent. Then

lim ~inzZ(T, V) = B 0doGm, T)—In{ o LAV 2
im —In , V) = — max m, T)—In - — n|-—5———
vow V T, o ¢TI 2\ T20"(m, 1))

e
(3.19)
with ¢ = oT,/4B.

_ 4B 1
So using T, as the scale for m and T and T as the scale for —V—an the results
0

are independent of the degeneracy d. In the numerical calculation we have maximised
the first to terms in the exponential in (3.14) with respect to m/T, at fixed o and then
maximised with respect to g. This procedure leads to curve 4 in Fig. 2. The mean energy
per particle may be calculated via '

E - 0 InZ > . 3.15)
= sy A = Gip <4BV/TO / .

and the Lorentz contraction factor m/E is then inserted into (3.11) in analogy to (3.2).
This is repeated until the procedure géts stable. This way we obtain curve B in Fig. 2.

4. Partition function for the quark continuum and the phase transition

Let us consider just one bag at rest in the volume V. This is, below T, a configuration
which is statistically irrelevant. However if we raise its energy it will expand until, at
E = 4BV, its extension coincides with V" and its surface with the walls; it is no longer
a free surface against the vacuum. Then the bag boundary conditions and therefore the
virial theorem no longer apply, we have a new phase, where the internal temperature
exceeds Ty. The total energy is however still the sum of the energy of the gas and the
empty bag energy BV. So we have

-E/T 1 n n
Z(T, V)= | dEe = V"d"Q,(E-BV) 4.1)
n'
4BV n=1

with, neglecting the 3-momentum cohstraint,

E3n 1
Qn(E) [ (2 )3 (Z 1k;‘ )= o (3n 1)| (4-2)




631

From this we obtain for 7 > T,

lim Lmz=28, LA 4.3
ymyht=Ti\\m) T 1) @3

For T < Ty, In Z becomes negative, so this phase does not exist. The result (4.3)
is plotted in Fig. 2, curve C. At T = T, this phase is not yet statistically competitive with
the bag gas phase, we find a transition temperature T, = 1.18 T, (intersection of curve B
and C). The transition is a first order phase transition, implying a discontinuity in the
energy.

5. Remarks and conclusion

Since the qualitative features of the thermodynamical system have already been
presented in the introduction, we should like to restrict ourselves to some additional re-
marks here. At the transition temperature we find an average hadron mass of about 4.5 7%,
With a bag constant of B/* ~ 120 MeV and a corresponding T, of 114 MeV (if a degeneracy
d = 12 is used) this average mass is still below the ground state mass calculated in the bag
model with the same B and massless quarks which is about 800 MeV. This is of course
due to the use of a continuous level density z(m} (Eq. 2.5) in this low mass region. On
the other hand the low mass spectrum presents also problems in the bag model even in
its refined version [2] and specially the pion, which is the most prominent object in multi-
particle production, is still in an unclear situation within the bag model. So in order to
close the picture also on a quantitative level, a more sophisticated version of our analysis
on the one hand and a better understanding of the meson spectrum, especially of the pion,
on the other hand are necessary.

The author thanks to Prof. E. L. Feinberg and Prof. R. L. Jaffe for discussions.

APPENDIX

A configuration with two different bag masses

As mentioned in Chapter 3, the equation (3.6) for the average bag mass may have
more than one solution. This occurs actually for T' > T, where d¢/dm is no longer biunique.
However the second derivative of g is positive at the high mass solution m.. The analysis
of the matrix of second derivatives of the exponent shows that a configuration with several
bags of high mass corresponds to a saddle point and not to a maximum. The only pos-
sibility is one big bag of mass m. and an ensemble of small bags of mass m_. The one big
bag is however statistically irrelevant in the thermodynamic limit unless its mass is
proportional to the volume V, tending to infinity. With the definition p = m./V the
maximum condition (3.6) becomes

ém i 0 om T, T

<

(A1)

4B 4B
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where ¢ is the density of the small bags. The last equation in (A.1) gives the asymptotic
behaviour of dg/dm as m — . The small bag mass is therefore determined by the
temperature and does not depend on u and p. The equality of the second and the last
expression in (A.1) gives then a relation between ¢ and u if T and therefore m._.. are fixed.
p can then be climinated and one obtains as the analogue to Eq. (3.12)

o1 1 1 1 1 1 1
lim—InZ =4B| — — — ) +max p<sp(m_)~m_|-— —- =] —In4B[— — —
Vv T, T e T, T T, T

—3In(p"(m ~)/Zn)} . (A.2)

Now the expression in the parenthesis is independent of g, so that, depending on the sign
of that expression the maximum is obtained either for ¢ = 0, i. e. a single big bag, or

TT

for 0 = Qpax = 4B/(m_+ ~]—"——;7); this implies u = 0, i. e. no big bag at all. For the
~—4io0

single big bag configuration one obtains

1 1 1
im —InZ(T, V) = 4B| — — — A3
lim 10 Z(T, ¥) (TD T) A3
which is always below the corresponding expression for the quark continuum, Eq. (4.3).
For the phase without big bag the values for ¢ and m_ give certainly a smaller value for

1 —
711’12 than o and m obtained by unconstrained maximization in Chapter 3. So the

configuration discussed in this appendix is statistically irrelevant, as was te be shown.
This *“‘phase’ seems to be a reminiscence to a similar phase in the statistical bootstrap
model (see the second of Refs [6]) which there is responsible for the ultimate temperature.
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