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We calculate the two-particle distribution and the associated multiplicity for large py
region in the framework of the parton models. We find that it is possible to construct a model
beeing able to fit quite well a large amount of data on the two-particle level. The model
should possess the following properties: a) the hard scattering cross-section should be
independent of energy at fixed pr, b) both quasi-exclusive (single-jet) and inclusive (double-
-jet) components must be present with the cross-section for the double-jet process at least
one order of magnitude larger than that for the single-jet process, ¢) the mean transverse
momentum in the jet fragmentation should be of the order of 630 MeV, d) the jet structure
function should be damped like (1—x)2 for x - 1.

1. Introduction

The general picture of hadron production, in the large py region, resulting from
experimental research at ISR indicates that the hard scattering model may provide the
correct dynamical description of hadronic interactions in this region. The most rigorous
test for the validity of the underlaying parton dynamics — presence of jets in the final
state — seems to be confirmed by recent SFM measurements [1].

However, this success of jet models is up to now only of qualitative character: none
of important parameters, like widths, slopes etc. are successfully predicted or explained
by the jet dynamics. The reason is that the description of the final state in the “naive”
parton model with zero width jets is too much simplified to give realistic quantitative
results. If one uses the standard form for the inclusive distribution of particles produced
by the jet fragmentation
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(where pryy, is the transverse momentum of p, relative to the jet J, axis, X, is the longi-

tudinal fraction of the jet momentum taken by f;l and Gml(il) is the structure function
for the jet fragmentation) then the resulting final state configuration is exactly planar.
If one calculates P,,, or azimuthal distributions one obtains simply & functions while the
experimental shapes are quite broad.

There is also some indirect evidence coming from the momentum dependence observed
experimentally, that the scale-invariant formula (1.1) is not able to reproduce the data.
For example, it was reported by the ACHM Collaboration [2] that the two-particle inclusive
distribution for two large py particles in the same direction can be described by the same
functional dependence as the one particle distribution, i. e.

do €12  Bvpi %

o — — e Xry '1‘2)’ (12)

d_B_Rl d’p, (pr1+p12)"

Ei E, Tq»zO,&yx*,vzl*O

while

do €1 _px
e == e @ (1.3)
d3P1 P¥1
E,

Without detailed calculations one can expect that the jet model with the scale-invariant
fragmentation spectrum will be in trouble with this observation. The reason is pure dimen-
sional: the distributions (1.2) and (1.3) have different dimensions and thus it is impossible
to obtain the same power N in both formulas if (1.1) contains no dimensional parameters.

Some additional factors like~I~ i : , !
s prPrz (Prit+pr2)’
restoring the correct dimension but spoiling the form (1.2), observed experimentally.
Another piece of the data, which indicates the relevance of some dimensional param-
eter in the final state is the associated multiplicity of charged particles observed exactly
opposite in azimuth to the triggered large p; particle. It grows nearly linearly with pr, i. e.

etc. must appear in Eq. (1.2),

dN3%
—— ~ O+ Prys (1.4)

d‘PdYZ PR,y ~0

and we have the next dimensional trouble of the model with the scale-invariant decay
spectrum: o, must have dimension since the left-hand side is dimensionless. Since the
masses of the particles are generally believed to be irrelevant in the large py region, the
realistic jet fragmentation spectrum must contain some dimensional parameter, from
which a;, could be constructed.

In the present paper we calculate the two-particle distribution using the finite py, 1
distribution. As a natural generalization of (1.1) we choose

dN A

P = ¢TI Gy (%), (1.5)
1
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where

n ~
:“1 (1=%)7 (1.6)
Xy

R i R
Gl]Jl(xl) = . Fl[.h(xl) =
1

Now all the widths in resulting angular distributions are finite and controlled by the
value of 4. In particular, in the limit 4 — oo we recover the zero width formula (1.1).

To get definite predictions in the parton model one has to choose some formula for
the hard scattering cross-section. Instead of limiting ourselves to any particular model,
we try to perform a mode! independent analysis, i. ¢. we parametrize so the hard scattering
cross-section as to include the broad class of models, calculate the yields and finally look
for what values of the parameters (i. e. for what model) the best fit to the data can be
obtained. Thus the result of our analysis is the collection of constraints which must be
satisfied by the model to fit succesfully the data. We do not discuss here the problem how
far these constraints are indeed obeyed by the up to now proposed parton models.

The paper is organized as follows: in Chapter 2 we present our parametrization of the
hard scattering cross-section and calculate the two-particle distribution. Comparison of
the resulting formulas with the experiment is presented in Chapter 3 (opposite side correla-
tions) and in Chapter 4 (same side correlations). A short summary can be found in Chapter5.
Some technical details concerning the calculation of the integrals appearing in the parton
model formulas are collected in the Appendix. The more detailed description of the method
of integration we use can be found in Ref. [9].

2. Calculation of the two-particle distribution

The notation used in this paper is ¢xactly the same as in Ref. [9]: constituents c,c,
from incoming protons A, B scatter elastically into two jets J;, J,, which in turn “fragment”
into detected particles 1, 2. Variables used during the calculation are defined in Fig. 1
(quantities with A refer to the c¢,c, CM frame, without A to the AB CM frame).

The hard scattering cross-section can be parametrized as follows: from the dimensional
analysis which is generally assumed to work in the fixed angle region s, t — 00, #/s fixed
one has

doy ¢

— 9 i
= J1S) @.1)

Now, since the left-right symmetry must be obeyed (see [9]) the inclusive yield depends to
a good approximation only on the symmetrized cross-section

d A A PN
<T;TH> - f—f: LA /s)+f(u/s)] (22)
t sym s

what can be written as

da'“ Co Co ..
e = — h(1) = —— H(2), 2.3
(dt )Sym s" @) (4p3)" ) (2:3)

N
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Fig. 1. Definition of the variables used in text
where
A = §2/(4fa) = cosh?y = 1/sin?d, H(L) = h(A)/)".

Since H(4) decreases for large A (or at least remains constant) due to the factor 1/4”" in all
up to now proposed hard scattering models, we can write approximately

do coH(1 -
(—-—“) = 2 ﬁ ") e, (2.4)
dt sym (4PT)
Formula (2.4) presents the parametrization we use in the rest of this paper.
The general formula for the two-particle distribution in the parton model reads:
do
d:’—P;TSP; = dXC;Gc;}A(xcl) dxchcﬂB(xcz)
E, E,

do
@py &'p;

AB—+1+2+X El EZ cgra—=+1+2+X

+(A<=BJ,-J) (2.5)
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where for the structure functions we assume the standard form

ncx c11A ' nc ol 15
Geyalre) = T U= Gopplx) = 212 (L= x ) 26)

c1 <2
transverse motion of constituents ¢, ¢, is neglected).
g
1t is convenient to discuss separately the cases when the particles 1, 2 are produced

Vi T . . .
on the same side: — 5 < g< 30. e. they come from the same jet) and on the opposite
) Vs 3 . . .
sides: D) < @< L) 7 (i. e. they come from two different jets).

2.1. Two-particle distribution for the opposite side

We have
do \
&*p, d*p,
E, E,; cica= 142+ X
d*ps, d’py, do dN ! N
ZJEL E. | &, &pi, &p, &ps @D
E.h EJz cica—~3id; E, Ji—o14+X 7‘:;—’ I;-2+X
/ dN
where (;ﬁ; , i = 1,2, are given by (1.5) and
CE Jyrex
do §d0'H,‘,\,. an 3,5 o
(&;});{3;“2 =TT o(s+14u)Ey),0°(py, — py,)- (2.1.2)
\Ey o Ep ceenn

Using the parametrization (2.4) for the hard scattering cross-section integrals in (2.1.1)
and (2.1.2) can be performed by means of the saddle point method. The detailed calcula-
tion can be found in the Appendix, where also the resulting formulas in its most general
form are collected.

Here we present only the quasi-exclusive (single-jet) contribution which is found to
be responsible for the leading part of the opposite side correlations (see Section 2.3):

do‘_ opp 5 BGpnyiEn 1 - BTZ
—— = e —F —
d3 i3 N 2 2|1z

Py 4D Pry my, D1y

E t EZ AB—-1+2+X
[ (Sin (}0)2] ) <)’2 — ¥ (X115 ¥ 1))2]
exp| —{ — expl| — | — 227
N d¢ i 4y,

Jrdg Jm Ay,

) Xr11 N-2 .
X [H(xn —Xx12)+ 0<<——> ) 0(x12 *xn)] ’ (2.1.3)
X2
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where N = 2n,
B(X'ny 0) == B(O, 0) =B = ch{A-’r—gcle’ (2]4)
B(x11s 11 B[ Bt 4 1 dcosh yt 2 h 215
s V) = 1 S —— COS s 1.

t1s V1 an-}-ocz Y1 B ta ¥ ( )

coH(1) e (AP,
cJ; == ) 2.1.6
2Y \/BxT1+ac ¢ )

2 4Ap%2+an+ot
4o =—=——, dy,= \/ , 2.1.7,8
VA pr2 VBxq, +a 44p3, ( )
max & Ble -

2 (X115 V1) = , 2.1.9
y2 (Xr1s Y1) BxT,+ocYI an_*_ah ( )

1—3% xp et

j,=13In _%L

1= xp ™

(We do not display explicitly the second term in (2.1.3) since it is strongly damped rela-

XT1

N-2
tively to the first one by the factor ( ) and can be neglected in the rough nume-

X12
rical analysis we perform in this paper. The complete formula can be found in the
Appendix). The first term in (2.1.3) is nothing but the one-particle distribution (see [9])

do ¢,
d’p, P

El AB->1+X

e~ Brzuy)xT: +(J1 «> Jz)’ (2.1.10)

and thus the associated multiplicity away is given by

NS, do do
dapz d3P1 d3P2 d3P1
EZ E.l E2 AB—-1+2+X El AB-1+X
[ (sin ?\*] [ (yz—y?“‘(xn, m)}
exp| — (— texp| — | ——————
_ 1 F (PTz) 4y a4y,
_— T 2 JZ — T T e T —
mZ, 2P\ pp, J7 A J7 4y,

x [O(xn — X))+ 0 ((52) _ ) O(xn-—xn):l . @.1.11)
XT2
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2.2. Two-particle distribution for the same side

We have now

do same _ [ d’py, &y, do dN
d’p, d°p, - .[ E, E, dsPJ, d3P12 d3P1 d3P2
E, E; Jemiizix E;, By, Jen \Er Bz [iaianex
2.2.10)
Where do, ., .}, is given by (2.1.2).

The simplest form for dNj, ., 4y, Which reflects only the long range phase space
correlations is

dN A - A .~ o o
m —77.: 4 Apriis,? —-7;—8 Apraix? xlszlzul(xl, x2) (222)
1 4 P2

El E2 Ji->1+24X

with

A 1 A a
G (X, X2) = == F1211,(X1+x2),
XX,

Fiop(X12) = nypp(1—X,)"2 (2.2.3)

The calculation of the integrals in (2.1.1) and (2.2.1) can be found in the Appendix and
the final result reads:

same
do — i Cra|) —Bi2(xr12,¥12)X112
3 3 N
d’p, d D> n (Pr1+Pr2)
El E2 AB-142+X
pri’pra? pri?pra?
- LI 2D 2 —A — 2
(_____pTl+pTZ) priztpe " ¢€ PriZtpr Ot o, 2.2.4)
P11+ D12

where xpi1, = X714+ X12, V12 = 3(V1+¥2)-

1 R N-3
By2(x112,0) = B12(0,0) = By, = R 12) (gcllA+gcz}B)’ X1z = ml >
Biy(Xt12> ¥12) = By, [M 3 (1+cosh y )+ L cosh Y12]
By x1i+0 Biyxr12t+a

1
2 AN-2 A AN-3 -~
Ciap3, = <x12 Yo, Xy ) = j dx2X1; Flzp,(xlz)a
o

1
N H(l)nchncz'B hayr——— N = 2n.

51
\/Blsz12+a

cT Y



056

2.3. Relative normalization of various subprocesses

Before we start to compare our results with the experiment we have to decide which
elementary subprocesses ¢; ¢, — J; J, give the leading contribution to the total yield.

The first well-known constraint is provided by the quark counting rules for the power
N:iN = N,—2, where N_is the number of quarks in the hard scattering. To obtain the
correct value of N & 8 for the meson production in ISR (we limit ourselves to this process)
all processes with N, < 6 must be excluded and the processes with N, > 6 can be neglected
to a first approximation. What remains are the processes like: Mg - Mg, MM — qq,
qq — MM, q(qq) — q(qq) with all possible jet fragmentations in the final state.

The next important restriction can be expressed as follows: if for a given subprocess
a quasi-exclusive limit exists (i. €. the detected particle is just the jet particle) then all the
inclusive versions of this subprocesses can be neglected relative to the quasi-exclusive
component (e. g. Mq —» M*(— M+X)q can be neglected relative to Mg — Mq with
M = 1 = J,. Note also, that for MM — qq, q(qq) — q(qq) the quasi-exclusive limit does
not exist — quarks and diquarks must fragment. This constraint follows from the follow-
ing relation between the nermalization constants [9]:

ey = XV D, (2.3.1)

where ¢;, is the normalization constant for the quasi-exclusive process ¢;c, = J,(= 1)J,
and c¢,);, the one for its inclusive version ¢;¢; — J (- 1+X)J, and

2

IN~28 i s AN-2 R (gnul)!(N’*?’)!
(x37 5 = J dxxy "Gy (xy) = ny, ‘(N_m . (2.3.2)
O
From the phase space sum rule
1
> f’?lGl[n(iOd;ﬁ =1 (2.3.2)
1 0
we find easily the bound n,;, < gy, +1 and thus
~ +DIN-=3)!
x‘;’"2> <(guu Y ) (2.3.4)
(N=2+gy3)!
For N = § we obtain from (2.3.4)
<£? <-2}T fOI’ g1|Jl = 13 <)zf <3% fOf gl[]; = 29
X% < i for g1y, = 3 ete. (2.3.5)

The intuitive origin of this constraint is quite obvious: to produce the large pr particle as
a child of some parent jet, the hard scattering must occur at larger energy s than the one
for the direct jet production and thus it is more supressed by the factor N2y in (2.3.1).
In the following we will use the names: single-jet process (double-jet process) for the
process which have (do not have) the quasi-exclusive limit.
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It follows from the above considerations, that if a single jet process and a double-jet
process have comparable hard scattering cross-sections then the contribution from the
double-jet process to the total inclusive yield can be neglected (just due to the extra factor
(X472 in (2.3.1).

The guess that all hard scattering cross-sections with the fixed number of external
quark legs (i. e. with fixed N) are of the same order looks reasonable as a starting point
to our numerical analysis. But if it is indeed the case, then all the double jet processes
can be described by quasi-exclusive processes only. It is just what we assume as a
starting point.

3. Opposite side correlations — comparison with experiment

Formula (2.1.3) which we use to describe the opposite side correlations data depends
on the following parameters: B, «, N, A, Moy &3, Parameters B, o, N are fixed by
single-particle distribution: for the meson production we have N= 8, B~ 13 for n°,
B~ 15 for n*. In Ref. [9] we have found that to reproduce the weak rapidity dependence
of the one-particle distribution one has to take « = 0. e. to assume that the hard scattering
does not depend on angle at fixed p;. Thus x is also fixed and we find further that the
constraint « = ( appears to be even much stronger on the two-particle level.

In the measurements of the associated multiplicities one usually sums over all charged
secondaries. It is reasonable to assume that the charged particles take 2/3 of the total yield
coming from the jet fragmentation. Then the constant 7., can be determined from the
phase space sum rule

1
; 0.‘ dx3%,Gy 1 (x2) ® §. 3.1
charged

Since the leading contribution is given by the structure function with the lowest value of
g2)5,» We can neglect all decays which are more damped in x, and we find

ey, = 2 Mo, = 5 (82p,+ 1) (3.2)
2
charged

Thus we have only two free parameters 4 and g,j;, which must be fited.

3.1. P, distribution

The angular distributions given by the formula (2.1.3) depend essentially on the
value of slope A in the jet fragmentation formula. The best place to fit 4 is the P,
distribution, measured by the SFM group [1]. Using the variables P, = p;, sin ¢,

Py P2 .
Py = prs €08 @, Xg = o ~ —=, proposed in [1] the formula (2.1.3) can be re-
1x Pt
written for P,, > P,,, pr; < P, as follows:
dN3h)

— 2 x e APl , Xg, . 3.1.1
dP,.dP,.dy, (P2x> XE2 ¥2) ( )
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Thus we obtain the factorisation in the variables P, and P,,, xg, y,, reported in [I]
and observe, that the slope of the P, distribution measures exactly the slope A4 in the jet
fragmentation spectrum. We find from Fig. 2 where the fit to the SFM data is presented,
that the Gaussian shape (3.1.1) reproduces the data rather well for 4 = 2, It corresponds
to the mean transverse momentum {prz;, relative to the jet axis

CProp = % \/% = 0.63 GeV /c. (3.1.2)

Thus we obtain the value which is remarkably larger than the typical hadronic transverse
momentum {pr> ~ 0.35 GeV.

dN <pyy>e25

dPyt [
out o 10<p,< 14

0<| yoj< 25
c I14< Pa < 17
0<| y;]<25
A 17< pp<32
10<] yl< 25

A=15

A=20

A=235

i I s : L
62 04 06 08 10 12 Foge

i

Fig. 2. Fit of the formula (3.1.1) (plots A, B) and (3.1.3) (plot C) to the P,y distribution (SFM data from
Ref. {1D

For P,, > pr, the second part of (2.1.11) should be used (see Appendix) and we
find then

2
dN?zp(g) —4 —'ﬂi—j Poud
— R e

2
Ty - F(pae Xp, ¥2). 3.1.3
PP dys (P2 X, ¥2) (3.1.3)

Thus we expect that for P,, > pr; the P, distribution should become broader with the
slope A

p 2
A ~ A( “) . (3.1.4)
Doy
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This effect seems to be indeed present in the data (see the plot C on Fig. 2, where the
slope is really smaller).

The physical meaning of this broadening is the following: for py; > P,, the configura-
tion measured in the one presented in Fig. 3: particle 1 is the jet particle, particle 2 comes
from the J, decay and its P, is determined by the slope 4. For P,, > p;, the inverse

Pr1>Pr2 Pra>Pry

Fig. 3. Pictoral explanation of the broadening of the P, distribution in the quasi-exclusive component for
P3yx > p11. In Fig. 3a particle 1 is the jet J, particle and P,y distribution is determined by the slope A.
In Fig. 3b particle 1 comes from the jet J, and the P, distribution is broader

configuration is detected : the particle 1 is now the jet J, fragment and the particle 2 is the
jet particle. The mean P,,, grows, it starts to depend on momenta and, as seen from Fig. 3,
formula (3.1.4) can be obtained from simple geometrical considerations.

If further experiments confirm the P,, and py, dependence of A, given by (3.1.4),
it will be the strong support to our guess that the quasi-exclusive component dominates
in the opposite side correlations. Note that for the double-jet process the point py; = P,
is not market out in any way and thus no essential changes in P,,, distribution are expected
in coming from the region py, > P,, to pr; < P,,.

3.2. xp distribution

The best place to study the jet structure function is the xg distribution, measured by

SFM group [1]. For fast fragments of the jet we have xp ~ Pr2 and intergrating (2.1.11)
P
over angles we find
d ngl) 2 1 G2134 43
—— & 5 (g, + 1) — (1 =xg)"""6(1 —xp). 3.2.1

dxg Xg
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Thus we expect that the xy distribution vanish for x; > 1 (in a more rigorous numerical
analysis one should take also into account the inverse contribution which would introduce
some smearing of the xg distribution around xg = 1). On the other hand, in the double-jet
process the point xg = 1 is by no means marked out and the resulting x; distribution
does not vanish for x; = 1.

As seen from Fig. 4, dN/dx; is indeed strongly damped for x; > 1 and it provides
the next evidence for the dominance of the quasi-exclusive component in the opposite side
correlations.

We find from Fig. 4 that the best fit can be obtained for g,,, = 2. This value seems
to be rather reasonable in view of parton model counting rules, where 825, = 2myy,—1

>

dN
dXE
15 o 7% ot 90°
: o 790 at 40°
7.0 -
9chlI; =1
o5
t 1 ;§ o

i i
02 04 06 08 10 Xg
Fig. 4. Fit of the formula (3.2.1) to the xg distribution (SFM data from Ref. [1])

ma;, beeing the minimal number of quarks which must be slowed down to produce the
fast fragment 2 from the jet J,. For simplest jets (quark, diquark) we find for meson
production

&g = L My = 3-

Thus one can try to understand the experimental value g,,, = 2 as a result of some
mixture of quark and diquark jets.

3.3. y, distribution

It was reported first by PSB-Collaboration and then by DILR, ACHM and SFM
groups [3, 4, 5, 1, 6] that one observes on the opposite side to the large p trigger a broad
enhancement on the rapidity axis with the width of order of 4 units. The shape of the
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bump depends rather weakly on the momentum of the associated particles (see Fig. 5,
where the SFM data for y, = 0 are presented). The position of the maximum y5** is only
weakly correlated with the rapidity y, of the trigger. It can be observed in Fig. 6 where

max

we have plotted y5°* as a function of y,. Some weak back-to-back effect is observed for

N |
dy,

o x<04
{slow particles)

dN | A 04<xe <06
dyz 0 06<xg<09
{fost particles)

1 / L 1 \ 1 o
2 1 0 7 2 72

Fig. 5. y, distribution (away) for y, = 0, {p1,> = 2.5 GeV/c for various P,x. Solid (dashed) line is the
prediction of the model for # = 0 (x = 4) (Formula (3.3.1)). SFM data from Ref. [1]

smal! y, and only for pion triggers, a weak anti-back-to-back effect seems to develop
for larger values of y,. However, the general trend on the bump is to stay at y, =0
irrespectively of the rapidity of the large p; particle.

Various parton models were found to be in trouble with the explanation of this
peculiar rapidity distribution and therefore our, to a large extend, model independent
considerations seem to be éspecially useful in this point. From the formula (2.1.11) we
have

AN, [ 4Ap7,
= Ngexp| =} (Bxy;+9) —5———— (¥, — ¥7 (X115 21, 3.3.1
dy, o €Xp 3 (Bxry )4AP?2+B'\’11+°‘(}2 ¥2 (X115 Y1) :] ( )
where
max o Bx B B 1—1 xp,e
Y3 (X ) = = =5, Fi=3%In B (33.2)

+ — .
B)cn-l—ozy1 Bxp+a 1—1xpe™™
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The first remark we make is that y, distribution depends very weakly on 4: one can safely
take the limit 4 — o0, i. e. turn back to the zero width formula (1.1) without essential
changes in (3.3.1). The p;; dependence of the width 4y, is also very weak: even for

2
— e onIy
N Bxyy+a
by a factor 1.6, and for p;, > 0.5 GeV the p;, dependence of 4y, is completely negligible.
On the other hand the width depends essentially on the value of «. It can be seen in Fig. 3,

Pr2 = 0.35 GeV the width is greater than its asymptotic value 4y3 =

Y5y, )= position of the maximum

Typical width
of the bump

i

T~

]
T
.

& positiye trigger
<& xT, positives

& w, negatives

v K, positives

v K negatives

® No identification
ACHM

PS8

3

.

DILR SFM

® e o s b P O
4N DT X ox NN

o o

Fig. 6. Position of the maximum of the opposite side bump on y, axis as a function of the rapidity y, of
the large pt trigger. Data are taken from Refs [3-8]. Solid lines are the predictions of the model (Formula
(3.3.2) with y; neglected)

where the formula (3.3.1) is plotted. Thus, exactly as on the one-particle level, we conclude
that only the model with @ = 0 is able to fit the large p; data.

Let us come now to the problem of the position of maximum. The second term in
(3.3.2) is consistent with zero in the present range of x;,, ¥, and thus y5°* depends essentiaily
on the value of a.

To have the bump which stays at y, = 0 when y, changes from 0 to 2 once more the
model with « = 0 is needed.

3.4. pr; dependence of the associated multiplicity

It is a well-known observation {3, 7, 5], that the associated multiplicity measured in
the narrow bin in ¢ around ¢ = = (i. e. exactly opposite to the trigger) grows nearly
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linearly with p,. From our formula (2.1.11) we find

Pt

NG| AN
dgdyy | per T2 d3 T2
l y2=0 0 "Ez
e 1
\/Z(EXTl +o) J‘dA \/ 4AP%1’?;22 F ~ 3
=T X ~ ~ c > e 2
2n b1 2 4Ap? X%+ Bxy, +a ba(¥2) (G4.1)
0

where we have changed the integration variable py, — x, = ﬁ—— Since F, hl,z()?z) is

Pry
finite for x, — 0, for sufficiently large p;;, we can replace the square root in the integrand

by 1 and we obtain
\/ [ 1
dN"Ef,)! A(Bxy,+o) .~ n P
chi1) | e T Fon(X)d%, = — </ A(Bx 3.4.
dody, Mﬂ . T1 npa{X2)dx, 32 (Bxp;+2) pry,  (3.4.2)
{¥2=0 0
where the last equality follows from (3.1.1). Thus we obtain the effect observed experi-
mentally.
As seen from the calculation presented above the growth of multiplicity exactly
opposite to the trigger is of pure kinematical origin: it does not depend on the detailed

N

4

Py, LGeV/ed

Fig. 7. Multiplicity of the charged particles in the angular region !¢| < 23°, ly,| < 1 as a function of the
transverse momentum of the trigger. Data are taken from Ref. [7], solid (dashed) line is the prediction
of the model for 2 = 0 (¢ = 4) (formula (3.4.2) with the background (3.4.3))

shape of the jet structure function and therefore it would be present even for the jet with
constant total multiplicity.

To compare the function (3.4.2) with the data, a low p; background must be added
to the jet contribution given by (3.4.2). Using the standard parametrization for low pp
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two-particle distribution we find

ch n -1 1= ¥2
(_z@) %S (Lhee 20T, (3.4.3)
dedy; Jiowpe 2r

where the height of the rapidity plateau for charged particles n, = 1.65, the correlation
coefficient ¢ = 0.75, the correlation length 4 = 2. Formula (3.4.2) with (3.4.3) added is
compared with the CCR data [7] in Fig. 7.

Note that large value of « is once more excluded.

3.5. ¢ distribution

The azimuthal distribution of associated multiplicity was first measured by the
PSB-Collaboration [3] and then by others groups. One observes a very broad enhancement
on the opposite side to the large pp particle. It can be seen in Fig. 8 where the ¢ distribu-
tion normalized to its low py value is presented for large pp n° at 90°.

25 T T T
o
Ky 35<py <45
& ~
£ 20f 07< ,<07
£
©
o
N
S 15k .
S
P

10 1 ] L 1
90° 135° 180° 225° 270°
1%

Fig. 8. Azimuthal distribution of associated charged particles. Data are taken from Ref. [3], the solid
line is the prediction of the model (formula (3.5.1) with the background (3.5.7) and the low py distribu-
tion (3.5.8)

Integrating (2.1.11) over py, and neglecting the pr, dependence of the square root
factor \'4Ap2,/(4Ap%,+ Bxy,+a) we find

dANSP 1
4 enr) = —  A(Bxg; +9) pr,®,.,,, (A), (3.:5.1)
d(P y1=y2=0 3n
where A = Ap2, sin? ¢ and
1
@ganm(}v) = (gch]Jz+ 1) £e~2x2(1 "“x)gchmdx' (3'5'2)

Note that for ¢ = n we have 4 = 0, &, (0) = 1 and (3.5.1) reduces to the formula (3.4.2)
discussed in previous section. Thus the height of the @ enhancement should grow with pr,
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according to the function presented in Fig. 7. The width of the bump is determined for
the function (3.5.2). For small 4 we have from (3.5.2)

. Api, sin’ @
., (Ap1y sin® @) ~ exp [— : (3.5.3)
s (8enprat 1) (Zenpss+2)
while for large 4
. _ 1
By, (ADTy SID? @) & (s, +1) 4 /70 (3.5.4)

\/Z Pralsin ¢ .

As seen from (3.5.3), (3.5.4), the width of the ¢ distribution depends on the transverse
momentum distribution (4 dependence) as well as on the longitudinal structure function
(geny, dependence) in the jet fragmentation formula (1.5). In particular, for ety = 2
we have

&,(%) = %[\/% <1+ 51;) erf (/) + %(e—)'—Z)]. (3.5.5)

To compare (3.5.1) with the PSB data we must add low p; background and divide the
result by the low p; distribution, i. e.

‘ . (3.5.6)

exp(PSB) B (ﬂ)
d(p fow pr;

Jet component in (3.5.6) is given by (3.5.1) and for the background and low p; component
we take

( dN ) N ( dN)
ﬂ — d(p et \ d(p background
de

< dN) o (3.5.7)

d(p background 2r ’ o
dN T

(-—-_) ~ 20 (1pce 7T, (3.5.8)
d@ fow pry 275

The formula (3.5.8) is the usual low py parametrization. By taking the background as
given by (3.5.7) we assume that soft secondaries accompanying the large p; particle are
produced by the same mechanism as in the usual low py events and are uncorrelated with
the large py particle. Numerical values of ng, ¢, A we take, are given in the preceding
section.

The formula (3.5.6) with (3.5.1), (3.5.5), (3.5.7), (3.5.8) included is compared with
the data in Fig. 8.
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3.6. Total associated multiplicity

As noted in Sec. 3.4, the linear growth of associated multiplicity exactly away to
the large py trigger is only a kinematical effect and cannot provide any information about
the true jet multiplicity.

To calculate the total jet multiplicity we have to integrate (2.1.11) over pq,, v,, ¢.
The result reads

Genile

. —1 /e .
N&tH(Pri = 2@, + D In Pr + (———*) Boni: +0{—)|.
m, k k .
1

For gy, = 2 we have

mn
Npt(pry) = 2 [ln Py —%+0< )] (3.6.1)

L4 Pt

Note that the logarithmically increasing total jet multiplicity simply reflects our input
dx

for the jet fragmentation (1.6) with —— (i. e. flat in rapidity) distribution in the small x
x

region.

On the contrary to (1.2) and (1.4), here m, appears as the mass scale. This is because
the main contribution to N gi?;, come from the soft particles for which the mass is a relevant
parameter. In discussing the distributions (1.2) and (1.4) the masses can be neglected since

Vs
5+ v 62 -
e 53 4
41 X 45 |
£ s 3
3 o 23
E
+ 25 ok -1
S o
- 4o
i 1 i i

1 2 3 4
Py, LGeV/c]

Fig. 9. Opposite side jet multiplicity, extracted from the charged multiplicity measurements by PSB Collabo-

ration [3]. The right-hand scale correspond to the original PSB result, the left-hand includes the correction

coming from the forward jet (Sec. 3.6). Solid line is the prediction of the model (formula (3.6.1)) — it
refers to the left-hand scale

they refer to fast particles only. As seen from (3.6.1), for pr, = 3 GeV/c, what is the
typical value for the present correlation measurements, the opposite side jet contains in the
mean 3 charged particles. It is a rather weak effect when compared with the total charge
multiplicity in the ISR region {(n.,> = 12 and thus the background analysis must be
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performed especially carefuly. At this point it is more useful to subtract the background
from the data instead of adding it to the formula (3.6.1), since we are interested just in the
magnitude of the total jet multiplicity.

The analysis of this type was performed by the PSB-Collaboration [3]: jet multiplicity
was calculated, roughly speaking, as a difference between the opposite side and the same
side multiplicities associated with the large pp n° at 90°. The resulting jet multiplicity
is presented in Fig. 9 (right-hand scale). However, this procedure is correct only if the

n-é
-y }0'4
05+
— 10‘5
078
(d _ ’0_5
w0
— ,0'5
- [~
g 10°° $
2 7 406 3
3, 1Yk
E0°F g
©)
3 4107 o
® Q
St} g
j % 3
g 7 R
Co-s| [ S
Q0 71 .
~ 410
0 S
10
o7k ,
-110

1 1 1 1 ! |
3 4 5 6 7 8

Pry*Pr; [GeV/c]

Fig. 10. Two-particle distribution for two large py in the same direction: §; * 0,, ¢ = 0 (left-hand scale).
Solid lines are drawn by hand through the one-particle distribution data, taken for p = p; +p, (right-hand
scale). Data from Ref. [2]

quasi-exclusive component gives the leading contribution to the same side correlations,
i. e. the large py is produced always alone. From the ACHM data [2, 5] we know at present
that this assumption is not true: we point out in Sec. 4.1, that to explain the same side
correlations, a double-jet component must be present. Simultaneously, it gives only
small correction to the opposite side correlations. It implies that the same side associated
multiplicity contains except of the background also a part correlated with the large py
particle (forward jet). It was found by the ACHM group, that after subtraction of the
background it remains 0.8510.15 particles per event in the forward hemisphere more
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exactly, in the angular sector: |y, —y,|< 1.5, l@|<60°. It is presented in Fig. 11 and
discussed in Sec. 4.2. Thus to obtain the correct value of the opposite side jet multiplicity
one has to add 0.85+0.15 to the PSB result. We make it simply by shifting the scale:
the left-hand scale in Fig. 9 refers to the corrected jet multiplicity. Solid line in Fig. 9
corresponds to the formula (3.6.1) — it refers to the left-hand scale too.

Let us note to the end of our analysis concerning the opposite side correlations that
except of the P, and xg distributions where the values of A4 and g, were fitted, all

N
10r _T T T-T T
o 11 I1f 1
as

:{ . 500
04 o 53°
02

i i d 1 i i

! 2 3 4 5 [}
Pr; [GeV/cl

Fig. 11. Multiplicity of particles associated with the large py, particle measured in the angular region
‘yi—y2] < 1.5, jol < 60° of the forward hemisphere versus the transverse momentum of the trigger.
Data are taken from Ref. [5]. Solid line is the prediction of the model for large values of pt; (formula (4.2.3))

other curves (Figs 5-9) were calculated without any further free parameters: B, o, N are
fixed by the one-particle distribution, the overall normalization constant ny;, is determined
from (3.2), ng, 4, ¢ in (3.4.3) and (3.5.7), (3.5.8) are taken from low p; physics.

4. Same side correlations — comparison with experiment

4.1. Two-particle inclusive distribution — momentum dependence and
normalization

In the preceding Chapter we have found that the single-jet process with 4 = 2,
« = 0,8,);, = 2 can describe quite well the opposite side correlation data.

In the following we try to use the same process to calculate the same side correla-
tions. We have two additional parameters in the formula (2.2.4), appearing in the two-
-particle jet distribution ny,5,, 127, Using the phase space sum rule

A
1—-x3

Z _(’; d-;ézizGlZ[Jz(sel’ )22) = (1“)21)Gl|11(’21) (4.1.1)

2

and retaining only the leading contribution on the left-hand side (i. e. the one with the
smallest value of g,,,,) we find

8123 = 1y 2"12112 = (gip,+ Dy, 4.1.2)
p)
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Let us look at the same side two-particie distribution when both particles are produced
in the same direction, i. e. ¢ x'y; —v,l &~ 0. We find from (2.2.4)

dO' same A c 2 B
i e e T (4.1.3)
d’p, d°ps n (pry+pr2)

S El EZ o=[ri—y2/=0

g 2
The factor r = i@;ﬁiﬁgﬁ_ can be bounded 1 <{r {2 and thus it gives only small
PryH P12
variation of the total yield. In the following rough estimates we put it to be equal to 1.5.
The remaining part of the formula (4.1.3) is nothing but the one-particle distribution
taken for p = p; +p,, the only difference being the overall normalization constant. This
effect is indeed observed experimentally.

In Fig. 10 the two-particle data for two n°-s in the same direction are presented
(left-hand scale). The solid lines are drawn by-hand through the one-particle data (right-
-hand scale). Both pieces of data are taken from ACHM experiment [2].

Thus it suffices to multiply the one-particle yield by a factor of 0.3 (see the difference
between the left-hand and right-hand scales) in order to obtain the reasonable fit to the
two-particle distribution for all typical ISR energies.

However, the problem arises if one looks at the normalization. Denoting

(E do )
! 2d3pld3‘p2 o=1yi—y2]=0
R, = — -

(=)
dsp p=p1tp2

A ¢ A e
R, ~ I o r(xNT%y < 0.025
T ey, 7

we have from (2.3.1), (2.3.5), (4.1.2)

while the experimental value found in Fig. 8 reads
R,, = 0.30.

At this point our model fails: the quasi-exclusive contribution gives 10 times too small
value of the same side correlations. The reason is quite obvious: in the single-jet process
it is much easier to produce one large py particle than a pair of them since the single
particle can be the jet particle while the pair in the same side can be produced only as
aresult of jet J, fragmentation. But, as noted in Section 2.3, the jet fragmentation introduces
the damping factor {x"-2) relative to the quasi-exclusive production and therefore the
ratio Ry, is very small.
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The situation is quite different for the double jet process: now the single particle as
well as the pair are produced by the jet fragmentation and the damping factors (x¥"?»
cancel in calculating of R, ; we find

A ) cllljl A

R, —r——— = —r = 126.
T Cyyy s

Hence R, is too small by a factor of 10 for the single-jet process and too large by a factor
of 4 for the double-jet process.

The simplest guess one can make to solve the problem is that both types of processes
contribute. Let us try to calculate R,, in this case. . We have

A Cizu,‘*'clx)zp, _ ir<£‘v—2>+R{)S 4 Rbs

R = — 7 = —_— ———
12 S D I ~ T
T cl|11+cl|]1 T 1+RDS Vs 1+RDS
where
c® c?
o Y12y ,aN-2 It _ ,aN-2\pE
Rps = S = (X > S = (x >Rps.
Cll.h CJI

To reproduce the experimental value R,, = 0.3 one must take

RLs = 0.31
what in turn gives
RE. — 0.31 > 17
bs = <£N—2> '

The meaning of the ratios Rfs and Rl is the following: R is the ratio of the hard
scattering cross-sections in the double jet and single jet processes; R, measures the relative
contributions of the double- and single-jet processes to the one-particle inclusive distribu-
tion and to the two-particle distribution on the opposite side, since

_ S, D _ 8 ,aN-2yD _ 8 I
Cyp, = o teny, = 6, +<x" ey, = ¢y, (14 Rpg).

Thus the correction from the double-jet process to the opposite side correlations is only
of order of 30%: the quasi-exclusive contribution dominates (70%,) and our results found
in the preceding Chapter remain valid to a good approximation.

Let us summarize the results of this section:

1. The single-jet component is not able to reproduce the large value of the same side
correlations: it fails by a factor of 10.

2. The correct value of R;, can be obtained by adding the double-jet component
with the hard scattering cross-section greater at least by a factor of 17 than the corre-
responding cross-section for the single jet component.

3. The double-jet component gives more than 90% of the two-particle distribution
on the same side.
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4. The single jet component gives about 70%; of the one particle distribution and of
the two-particle distribution on the opposite side.

To the end of this Section we wish to note that the problem discussed above was
considered recently in a slightly more phenomenological context (i. e. without refering
to hard scattering models) by S. D. Ellis et al. in [10]. One can easily verify that the param-
eter «, introduced in [10] is nothing but 1/R} in our language. The value o, = 4 obtained
in [10] can be compared with 1/R}s = 3.2, found by means of the rough estimates,
presented above.

42. Momentum dependence of the associated multiplicity

The experimental information is here very simple: the multiplicity of particles
produced in the same side as the large pr trigger does not depend on py; and is of order
of 1 after subtraction of the background (see Fig. 11 where the ACHM data [5] in the
angular region: |y, —y,| < 1.5, |¢| < 60° are presented. The same side multiplicity was
also measured by PSB [3], CCR [7] and DILR [4] groups. The ACHM data are most
useful for our purposes due to the background subtraction).

From (2.2.4) we find

N
€121 dpr, Pt _B
same ~ I x
Nch(i)(pTl) ~ J € ™ large pr:

Cij1, J M2 \P11+Pr2
o0
¢ d _ c
‘2“'j Pr2_ e = 023 120 4.2.1)
iy s \/pn—f-m €y

where the last integral is calculated for m = m,, B = 13. Thus we obtain indeed the constant
multiplicity (at least for large values of py;) and using the experimental value of R,,
(see Sec. 4.1) we get

b1
NGRS = 023 — 2R, = 107 4.2.2)

The factor of 2 is present since we ask about the charged multiplicity and have to our
disposal the value of R,, for two n°—s.

It is interesting to note, that the same side multiplicity tends to some constant with
pr1 increasing in any fixed angular region (and not only when integrated over the all
forward hemisphere). We have from (2.2.4)

f:zl‘lTlc)ilyx—y2[<yo,l¢] <®0 large p:rix erf (V/ZESin (POD erf (\/Z yO) zf?fy (423)

In particular, the ACHM data presented in Fig. 11 correspond to yo = 1.5, ¢o = 60°.
From (4.2.3) we obtain

same ~
Nch(l)“y;, ~y2] < 1.5,|p}<60° ~ 096’

what is consistent with the experimental value 0.85+0.15.
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4.3. y, dependence
Contrary to the broad bump on the opposite side, the same side rapidity distribution
is narrow, centred at the rapidity of the trigger and shrinks prominently with increasing
momentum of the associated particles. All these effects are typical for the jet dynamics
and are certainly present in our formula (2.2.4). We have
same pr12pr2? _
dN3 )y _ Noe—A;;m(h .vz)z. (4.3.1)
d}"z
The function (4.3.1) with 4 = 2 is compared with the ACHM data [8] in Fig. 12.
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Fig. 12. y, distribution of the same side associated multiplicity. Solid lines are the predictions of the model

{formula (4.3.1)). No background corrections are made and therefore N, in (4.3.1) is fitted to each curve
separately. Data from Ref. [8]

The essential difference between y, shapes on the same and opposite sides find in the
parton models a very convincing explanation: since jets are colimated, the direction of the
triggered large p; particle fixes approximately the direction of the forward jet and we
observe a narrow bump in y, around y,. On the other hand, in the same measurement the
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direction of the opposite side jet is not fixed because the c¢,c, system has some finite ¥
distribution. The width of the opposite side y, distribution is determined by the width of
the Y distribution of c¢,c, system, since
ya=Y4+y, m Y+y,=Y-j, ~ Y-y,
2
\/ Bxq +a .

Thus the same side y, distribution measures the width of the jet, while the opposite side y,
distribution measures the mobility of the c;c, system on the rapidity axis.

Ay, = AY = “4.3.2)

5. Summary

We end this paper with a brief review of the results we have obtained.

We have analysed the large p; data using general parton model formulas and we have
found in this way some non-trivial constraints which must be obeyed by the ‘“good”
parton model.

1) Strong evidence is found for a very special form of the hard scattering cross-section,

doy

reported first in [9]: —.-should be only a function of py, i. e. it should be independent
P dt

of angle at fixed p;.

2) It is proved that the same side correlation data cannot be explained by means of
one leading subprocess: the single jet process gives much too small, and double-jet process
much too large value of the correlations.

One can obtain the correct description of correlations by adding both contributions
but only if the double-jet component has the hard scattering cross-section larger at least by
a factor of 17 than the single-jet component.

Double-jet component dominates in the same side correlations (90%;) and the single-jet
process gives the leading contribution (70%;) to the opposite side correlations.

3) The jets in the final state should be rather broad with the mean transverse momentum
of the order of 0.63 GeV.

4) The jet structure function should fall for x — 1 like (1—x)2,

The models which posses all these properties give good description of existing large
pr data on the two-particle level.

The authors are grateful to A. Biatas and to R. Wit for continuous help and encourage-
ment during the course of this work and for the critical reading of the manuscript.

APPENDIX

In this Appendix we calculate formulas (2.1.3) and (2.2.4) for the two-particle
distribution.

Let us start with the opposite side distribution. To perform the integration over
angles in (2.1.1) we approximate the exponents in (1.5) using the steepest descend method.
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We find

. . pr1?pr2?
- 24 2y - 2 2
e A(pr113,2 + Pr2i3s ~e pri2+pr2

[sin2 @+ (2Y — (y( +y2))2]

pr2?

- 24 poa2 oel 2t — 22
A(pr1?+pr2 )_{[¢1|J1 v ra—

@ _,,)z] = #0 -y}
X e .

~

.oa Py Pr1 A P, Pr2 .
Denoting x; = — =~ y Xp = x— R we obtain

2
Dy, Pri, py, Py,

2 2 2ppy2
do A PTiPr:  —A4 TP [sin? o+ 2Y ~ (1 +y2))?]
e - = e pri?tpra
d3P1 d’p, n P%l +P%2

El E2 c1c2+J132

1 1
d£1 dsez ’21 -’22 Pr1 P'rz
x j ~3 f 53|l + =)= F1|J1(x1)
X1 X2 P11 Pr2 X1 xz
XT1 X2

~

. S8 do " A A
Fop(Ry) — —= 8(+1 +1)
ndt

The integration over x,,, x., in (2.5) can be performed by the method described in Ref. [9]:
we change variables x, , x,, = M, ¥, where M and Y are the mass and rapidity of the
C1C, system and approxxmate the Y dependence of the integrand by a Gaussian. Using the

parametrization (2.4) for the hard scattering cross-section we obtain finally

2 2 pri?pr2? .,
do _ A Pubn 4 st

d’p, d°p, on Pt +p3,

El E2 AB->1+2+X

N cOncllAncleH(l) de1 dx2 ( + _55_2>
4N Pr1 Pr2

X7t

=b(x13,,¥1)%13y
Pt Pr2 e
X6 (x— - x—> F1|Jl(x1)F2|12(x2) pN
1 2 TJ
' \/beJI +(x+4A ___pTlpTZ
PT1 PTz
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— 4 (bxps ta)
X e bxys,tat44

[RTETI) (Y2~ ¥27% (xp1,,71))

pr12+pr2?
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where b = g. 14+ &c,18

o
b(Xry. y1) = b l:_‘-_“‘ 3 (I+cosh y,)+ cosh y, |,

b T_‘h + o bx'rh‘!"(x

~ o bxry
max X s — + 1 ,
Y2 (X730 V1) be,l-{-ozyl P 1

1—4 xpy.€"
§ =il 2T (A.1)

1—3 xpe

The last step is to perform integrations over x;, x, in (A.l). It can be done by using

the mean value theorem (see Ref. [9]). It is convenient to consider separately the cases

Xp1 = X125 X11 < Xp2. FOr Xq; > Xqy, (1, k) = (1, 2) or (2, 1), we perform the xp, inte-

gration with the & function and xy; integration by means of the mean value theorem.
The final resnlt can be expressed as follows: denoting by

02(P11> Pr2s V1s V2o 95 1131, 232)

Ciyyy, - 1 P12
= ,..N‘ e~ Blxriyi)xz 5 F2|Jz <x1> piliated

P11 P12 +u? Pr1

sin ¢ 2 Y2—J5% e ¥\
TPl T\ 49 ) P LT

NEFT Jr Ay, ’ 42

X

where N = 2n,

1 X1y \ _ _
B(lea yl) < 1> b(z;s s yl) > B = B(x‘!’bo) - B(Os O)’
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XD = ———
! N-2+g4,

1
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we can write for the process (A, B) — (c;c;) = (3,1, = (1, 2)+ X

do
d3?§ d3P2

EI E2 AB—-1+2+X

= 0:(Pr1s Pr2> V1> Y2, 93 U4, 213)0(pry — Pr2)
+02(P12; Pri> Y15 Y25 95 235, 111 )0(pry — pry)
+02(P115 Pr2; Y15 V2, 95 1J2, 213 )0(p1( — Pr2)
+02(Pr2> Pris Yo Y2, 95 2134, UID0(pra— pry). (A3)

The last two terms have appeared as a result of the symmetrization J, <> J,. For the
quasi-exclusive contribation (1 = J,) one has to put in (A.2)

G =G =1

4 1 1
q} = e/ e,y
V/A Pr2
2 4Apf~2+BxT1 +a
Ay = A 3 .
\/Ble‘L'a 4 pTZ

To give some feeling about the relative importance of various terms appearing in (A.3)
we note that:
a) the second and the fourth term are damped relative to the first and to the third,

N_2
respectively, by the factor (E) ;

P12
b) if J, = J,, the symmetriiation J, <> J,, resulting in the last two terms, reduces to
multiplication ot the first two terms by a factor of 2. If J, # J,, the normalization factors
C1y1,sCrypy, differ very essentially (<x}~2) is rapidly varying function of g1y, and to
a first approximation we can retain only the contribution with the smaller value of g).
If we fix labeling of jets in such a manner that 815, < &1y, then, taking a) and b)
into account, the leading contribution in (A.3) can be displayed as follows:

do
d’p, d’p,

Ei E;/apeisaex
X V2
=(1 +59.{1,,g,|12) [o(xn —Xxr)+0 (('—‘) ) a(xn“xﬂ)]
T2

X 02(P115 Pr2> ¥V1> Y2r @5 1131, 213,),
where ¢, is given by (A.2).
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The same side two-particle distribution can be calculated by the same method.
We have

N 2 2
~A(pr1?+pr2?) (tpxln + P ¢)

—A(pr113.2 + Pr2134%) A pri?+pr2?
e ~ e

2 2
1 .
1 yz)) A BEPr pnz[sm2¢+(y1—yz)2]

A A
—A(pr12 + pra?) (yn" yi= p 124 pra
T £

x e pr1? +p1'22

Integration over angles in (2.1.1) gives
do
d3P1 d’p,

El E2 cic2—~1+2+X

2 2
A (PT1 + PTz) P:—f}fﬁ—zz [sin2 o+ (y1—y2)?1

T ph +piz

1

dx § dog _n A
X J‘ 12F12|,1(x12)—— diﬂé(s+t+u),

x3

X2

where X1, = X1 +X2, Xr12 = Xp1 +Xr2-
Integrating over ¥ and x,, exactly as in Ref. [9] we obtain finally the formula (2.2.4).
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