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IMPACT PARAMETER ANALYSIS OF MULTIPLICITY
DISTRIBUTION IN HIGH ENERGY PROTON-NUCLEUS
COLLISIONS
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Assuming the geometrical model of particle production, the average multiplicity of
negative particles produced in high-energy proton-nucleus collisions at fixed impact parameter
is determined from experimental multiplicity distribution and elastic scattering data.
The results are compared with the similar analysis performed earlier for proton-proton
collisions.

In this paper we continue the discussion of the multiplicity distribution in the impact
parameter representation. Using the method proposed in Ref. {1] we attempt to determine
the average multiplicity of particles produced in hadron-nucleus collision at given impact
parameter.

Our starting point is so-called geometrical model [2, 3, 4]. In this model the multiplicity
distribution is represented by the formula

|
P(n) = — szba(b)p(n, b), 6))

where o = [d?ba(b) is the total inelastic cross-section and o(b) is the total inelastic cross-
-section at impact parameter b. p(n, b) is the multiplicity distribution of particles produced
in the collision at impact parameter b. It is furthermore assumed that at high energy the
distribution p(n, b) is very narrow and can be approximated by J-function

p(n, b) ~ 8(n—n(b)), @

where n (b) is the average multiplicity of the collision at impact parameter b. It is this
function n(b) which we want to determine from experimental data.
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To this end we use the equation

_ 2nbo(b) N
NP(n) = -
() e ®
db |y,
which follows from Eqgs (1), (2) of {1, 2]. Here b, is the solution of the equation
nb,) =n )

and N is the average multiplicity of the collision

N = Z nP(n) = % jd’ba(b)ﬁ(b). (%)

As shown in reference [1] equation (3) can be considered as a differential equation for n(b)

dw 2rba(b) 1

BT T ey 6)

where for convenience we denoted

n(b
w(b) = ’*1%,—) . M

The sign ambiguity of equation (6) implies that there are two solutions for n(b). In this
paper we consider only the so-called “intuitive” solution which is obtained by taking
a negative sign of the right-hand side of Eq. (6). This corresponds to the geometrical
picture of the collision in which the “‘central” collisions at small impact parameter lead to
the production of many particles, whereas in “peripheral” collisions at large impact
parameter only a few particles are produced.

The solution w = w(b) of Eq. (6) is obtained by integration

w(b) 0
J p(w)dw = %fdzba(b). ®)
0 b

In reference [1] w(b) was found from Eq. (8) and known KNO function [5] y(z) and inelastic
cross-section a(b) for p-p collision. In the present paper we solve Eq. (8) for the case of
p-nucleus collision.

As seen from equation (8), to determine w(b), it is necessary to know o(b) and (z).
For a given nucleus of mass number A the inelastic cross-section o(b) can be very well
estimated from multiple-scattering formula

aub) = L=[L-oD(B)]*, &)
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where

+ o

D(b) = | olb, 2)dz (10)

and p is the nuclear density. o is the total proton-proton inelastic cross-section. The nuclear
densities were taken in the form of Saxon-Woods distribution.

- 0
oF) = — =55 » (11)

1+e ¢

where the nuclear parameters R and a were taken from reference [7}.

For the KNO function we assume that it is the same for all nuclei, i. e. equal to that of
the hydrogen. This assumption is consistent with available experimental data [6). In the
present calculation we used the Moller fit [8]

w(z) = Az€ exp (—BzFtY) (12)

with A = 1.43, B = 0.758, C = 0.886.
When equation (12) is introduced into equation (8) we obtain

b2
w(b) = exp [’clﬁ In (— % In G f oA(b)dbz»:l : (13)
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Fig. 1. Average multiplicity vs relative impact parameter. The curves for the nuclei from 4 = 27 till
A = 207 lie in the shadowed area
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The formula (13) was evaluated for several nuclei from 4 = 4 to 4 = 238. The results are
shown in Fig. 1 where we have plotted w versus the variable

B = bR 314

for A = 4, A = 27, and A = 207. Tt is seen that the curves coincide at small 8 but starting
from f =1 no clear systematic trend is observed.

In figure (2) we show w as function v/v, where v is the average-number of collisions at
given impact parameter
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Fig. 2. Average multiplicity vs average number of collisions at fixed impact parameter. The curves for the
nuclei from A4 = 27 till 4 = 207 lie in the shadowed area

and v is the average number of all collisions
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There one observes again noticeable differencies between different nuclei, particularly at
the end of the curves.

Finally in figure 3 we show w versus the variable Q/Q,. ., where Qis the eikonal
defined by the formula

o(b) = 1—e 2%® a7
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It is seen that, plotted in this variable, w (Q/Q,,.,) has a systematic trend to decrease
with increasing atomic number. Furthermore, starting from 4 = 12, there is no significant
change with 4. These observations seem to be in agreement with expectations from
eikonal model [9, 10] which suggests that eikonal Q is the most natural variable for
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Fig. 3. Average multiplicity vs eikonal

description of all dynamical variables. However, similarly as for hydrogen, the dependence
of w on @ is not linear and therefore some simple conjectures [10, 11] are ruled out.

In conclusion, we calculated average multiplicity as function of impact parameter in
hadron-nucleus collisions, using geometrical modzl. The obtained results show important’
differences with the situation found previously for hydrogen. Thus it seems that geometrical
model does not provide a universal picture of hadron-nucleon and hadron-nucleus inter-
action.
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