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LETTERS TO THE EDITOR

EFFECT OF LEVEL DENSITY DISTRIBUTION ON ENERGY AVERAGE OF THE
SCATTERING FUNCTION

By N. ULLaH
Tata Institute of Fundamental Research, Bombay*
(Received April 8, 1977)

The realistic level density distribution recently given by French and Wong is used to
evaluate ths energy average of the scattering function and the results are compared with
the usual expression which is obtained using Wigner’s semi-circle distribution.

In the last couple of years a new kind of Hamiltonian ensemble has been introduced
[1-3]. It differs from the usual random-matrix ensemble [4] in the assumption that it is the
two-body part of the Hamiltonian which is random rather than each of the many-body
Hamiltonian matrix elements. The justification for this assumption is the fact that it leads
to level densities which are in agreement with the ones obtained using shell-model spectro-
scopy. The numerical calculations of French and Wong [1] and Bohigas and Flores [2]
have established beyond doubt that the level density distribution is Gaussian in nature
and not the semi-circular [4] which one obtains in the usual random matrix ensemble.
Because of this French and Wong [1] had cautioned that considerabie uncertainty would
seem to attach to any results which rely on the assumption of statistical independence
of many-body matrix elements.

An important quantity where one uses the eigenvalue distribution is the average of
the low energy scattering matrix for the resonance reactions which pass through the forma-
tion of the compound nucleus. The purpose of the present note is to study the effect of
the density distribution on the well-known relation between the transmission coefficient
and the ratio of the average width to the average spacing.

We consider elastic scattering and following Feshbach, Kerman and Lemmer [5]
write the energy average of the scattering function S(E) as

E0+i-;— -Z,
(S(Eo)> = H —_— M

I
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i
whete Z, = ¢, — B} I',, are the complex poles of the scattering matrix,  the width and E,

the center of the Lorentzian energy resolution function. In writing expression (1) a constant
phase (exp i @) arisin~ “ue to hard sphere scattering has been omitted. We now rewrite
expression (1) using its integral representation [6] as

1
(S(Ep)) = exp| — —; J d Z r, 11‘
5 .

f (Eo—g)+ - (I=AT,)
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(EO_gu)+ 3 (I+A'Fu)

Making the usual approximations, I > I', and replacing the sums over u by an integra-
tion expression (2) can be recast in the following form

(SE)) = exp| (=) JL ds, | . 3

—g,+ — 1
2

where (I, is the ensemble average of I', and ¢(g,) is the density of the real parts of the
complex poles Z,.

From expression (2), one gets the usual expression for {(S(E,)),

all >
(S(Eo)y = eXP(— D" ) @
if one uses Wigner’s semi-circle distribution for g(s,).
n  [(4D’N* \}
o = o2\ ) )

where N is the total number of levels and D their average spacing, the quantity ND = AE
is assumed to be much larger than I. The center of the energy resolution function
E, = (g, is taken to be zero.

Now we would like to see what will be the consequences if ¢(g,) is not a semi-circular
distribution but is Gaussian in nature as shown by French and Wong.

Let us write this distribution as

2
(o) = N@no*) ™ exp (— -}(;) ©

where ¢ is the dispersion and is a function of N, D. Using this ¢ in expression (3) and
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carrying out the integration over g, we get

7\ r 1
{S(Ey)) = exp {—N(F‘) (5;—2> [exp (@>] erfc (2 \/i a)} s (7

where erfc is the complimentary error function [7]. As in Wigner’s distribution given by
expression (5), we assume the dispersion to be much larger than the width 7 of the Lorentzian
energy resolution function. Expression (7) can then be rewritten as

Ex
(S(Eq)y = exp [—N<r,,> (2—}) ] ®)

Therefore, in place of the usual expression (4) for the energy average of the scattering
fanction S(E), one gets the above expression if the distribution is Gaussian in nature.

Now an important property of Wigner’s distribution is that the average spacing D
is related to g(e,) in the following way,

+ 6E
1 1
Doy | ee)de ©
-3 oE

If we impose this condition on French-Wong’s distribution given by expression (6), then
the dispersion ¢ is given by

ND
g = —=7 .
J2n
Putting this value of ¢ in expression (7) we get

all ,‘>)

(10)

(S(Eo)) = eXP(* D

Thus we arrive at the important result that if the Gaussian distribution satisfies the
condition given by expression (9) then the expression for the average of the scattering
function is exactly the same as the one obtained using Wigner’s distribution, otherwise
the energy average of S(F) will be different than the usual expression.

We would next like to ask if the expression for {(S(E,)> would remain unchanged had
o(e,) been diffrent than the Gaussian distribution but still satisfying the condition given
by expression (9). To answer this we consider the following Lorentzian distribution for
[{CAN

Na 1
g,) = — N 11
o) = 5 — ()
8u+z

where {a is the half-width of the Lorentzian. Using the theory of residues the integral in
expression (3) can be easily evaluated and we find that {(S(E,)) for a Lorentzian distribu-
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tion is given by

AN
(S(Ep)> = exp| — ~——— ). (12)
a+l1
Using the condition expressed by expression (9), we find that
4ND
a=-—. (13)
T

Thus for a Lorentzian distribution satisfying the condition given by expression (9),

A
(S(Eq)) = exp (__ o ) (14)
taking ¥D » L

Comparing expressions (14) and (4) we find that (S(£,)) is not the same as the one
given by Wigner’s distribution.

We would further like to remark that from the point of view of edge effects in the theory
of average cross sections the choice of the center of the energy interval AE in the condition
expressed by expression (9) seems to be most suitable.

Lastly we remark that even though we have considered elastic scattering only, it is
obvious that if reaction channels are also open, the effect of level density which arises
due to summation over resonances remain the same, i. e. all one has to do is to replace
the factor /D by the new factor involving =, ¢ and N.
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