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Exact solutions of the field equations for a thermodynamical perfect fluid with an
infinite electrical conductivity and constant magnetic permeability are obtained under the
assumptions that the space-time is spherically symmetric, the flow is isentropic and the
fluid is incompressible. A class of static solutions reduces to the well known Schwarzschild
solution in the absence of the magnetic field and Nordstrom-Jeffery type solution is
recovered when the field is purely magnetic. A class of non-static and time-dependent solu-
tions is also obtained. For numerical evaluation, the results are cast in dimensionless forms
and the boundary conditions are stated.

1. Introduction

In the last sixty years, or so, various exact solutions of Einstein’s field equations,
mainly with the perfect fluid distributions in spherically symmetric space-times and
with the electromagnetic fields in cylindrically symmetric space-times, have been found.
General relativistic fluid spheres by Schwarzschild, Tolman, Oppenheimer and Volkoff
are well-known. A series of papers dealing with new exact solutions under the assumption
of the spherically symmetric distribution of a perfect fluid are due to Kuchowicz [1-4].
These solutions have been studied with special reference to the neutrino emission processes
in advanced evolutionary stages of superdense stars (Kuchowicz [5, 6]). May and White
{7] have given numerical analysis of cold neutron stars. Vaidya’s radiating star has been
studied by Lindquist et al. [8] for gravitational collapse. Solutions describing contracting
as well as expanding distributions with a pressure gradient have been studied by Vaidya
[9), as a non-static analog of Schwarzschild internal solution. Taub [10, 11] has found
a time-dependent interior solution of the field equations of isentropic relativistic hydro-
dynamics.

In none of the works cited above, the magnetic field which is inevitably present in the
astronomical objects like neutron stars in the intergalactic space is considered. The
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origin of the magnetic field has been a perplexing problem. The intergalactic matter is
having very high electrical conductivity and strong magnetic field. Superdense or super-
massive astronomical configurations like neutron stars according to our knowledge are
characterized by strong magnetic field of the order 10!'? gauss. These facts prompt one to
incorporate the magnetic field effects in the models of the superdense stars. The assump-
tion of a magnetofluid with infinite electrical conductivity and constant magnetic per-
meability befits theoretical considerations pertaining to cosmological models having
magnetic field.

Using Lichnerowicz’s [12] field equations for a thermodynamical perfect fluid with
infinite electrical conductivity and constant magnetic permeability, Date [13, 14] has
obtained some exact solutions and interpreted them as universes filled with irrotational
and shearfree magnetofluid. Bray [15-17] has found Gédel’s models and axially symmetric
universes filled with a magnetofluid by solving Lichnerowicz’s field equations.

This paper aims at obtaining solutions which are amenable for numerical computa-
tion. The following assumptions are made to obtain such solutions.

(a) The fluid is incompressible and isentropic with zero internal energy density.

(b) The space-time filled with a magnetofluid is spherically symmetric.

(¢) The coordinate system is comoving.

{d) The velocity field and the magnetic field exhibit spherical symmetry.

2. Field equations

The energy-momentum tensor for a thermodynamical perfect fluid with infinite
electrical conductivity and constant magnetic permeability is (Lichnerowicz, [12]).

Tab = (00v+ﬂh2)uaub—(p/c2+% ”hz)gab_”'hahb’ (2'1)

where g is the matter density, u is the constant magnetic permeability, p is the hydrostatic
pressure, ¢ is the velocity of light. The fluid index v is given by

€
V=14 ot veo = ot o, (2.2)
¢ € Qo

where ¢ is the internal energy density. The 4-velocity vector #* and the magnetic field
vector h® satisfy the relations
uu, =1, h°h, = —hK, hu,=0. (2.3)

The field equations of relativistic magnetohydrodynamics (RMHD) are as follows:
Einstein field equations are

Ripy—3%Rgy = --kczT;,,, (2.9)

where
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Maxwell equations are
uht—u"h%), = 0, (2.5)

where a semicolon indicates covariant differentiation and a comma denotes partial
differentiation. The equation connecting rest temperature T, and entropy S is

TodS = de+pd (1]p,). (2.6)

Consequently the equation of continuity has the form

1
v(Q()ua)m"[_ _C_i TOQOuaS,a = 0. (27)

3. Spherically symmetric space-time and magnetofluid

By means of the assumptions made in Section 1, we determine the thermodynamical
variables g, p, S, the 4-velocity #* and the magnetic field #°. From the assumption (a)
(the isentropic motion of incompressible fluid with zero internal energy density), we have

(Taub [I0])

S = constant, g = constant, ¢ = 0. aG.n
We consider the metric for spherically symmetric space-time as
1 1
ds® = &4dt’ — 5 *Pdr’ — — e*°dQ?, (3.2)
¢ c
where A, B, C are functions of r, t and
dQ = dO?+sin*Odep?.

Assumptions (¢) and (d) imply

u* =(0,0,0,e M, (3.3
p = pede*®4-1), 3.9
where
2
1
5=200 o g4, (3.5)
Po o

Here p, is a constant having dimensions of pressure.
From the vanishing components of T, in spherically symmetric space-time, we obtain
the magnetic field consistent with (2.3) and (3.3) as

A = (h,0,0,0). (3.6)
Mazxwell equations (2.5) yield
h',=0,h',+h'(B+2C), = 0. (3.7
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Consequently, we get

hl — aoe*(B+2C), h2 — Y. €_4C (38)

where a, is an arbitrary constant.
For computation purposes, we find the Einstein equations in dimensionless forms by
introducing the dimensionless variables

ct ¥ h
T=—, =—, h=-—, 3.9

where 7, = (kpo/c?)~* has the dimensions of length and A, has the dimensions of the
magnetic field. In the space-time (3.2), Einstein equations become

e 2C, 4 +3C7 —2C A} —e PP {C P +2C, A, = —e7 - L +n%e”*¢,  (3.10)
Po
e 2 {Bys+B,® +Cuy+ C,2 +B,Cy— B A, — CuA,)
—e 2%C  +C P+ A, +A4,*+C A, ~AB,—B,C,} = — r —-n%e™*¢, (3.11)
0
e 24{C 2 +2C, B} e *B{2C, +3C*~2C B} = —e *4+6+n%e . (3.12)
Cis+C,Ca—C B, —CyAd, = 0, (3.13)
where
n® = pay*hy’/2p, and C, = —, C4=— etc
or ot
The equation of continuity (2.7) yields

These are five equations in three unknowns 4, B, C. Therefore, the solutions of any three
equations either satisfy the remaining equations identically or give rise to the consistency
conditions.

4. Boundary conditions

The equations (3.10) to (3.14) can be solved fully if the boundary conditions are
known. The boundary conditions for the present problem are on the boundary (hyper-
surface) separating two regions. Across the hypersurface separating space-time into
interior and exterior, we have the following boundary conditions:

(i) The gravitational potentials are continuous, their derivatives with respect to 7 are
continuous, and the derivatives of 4 and C with respect to r are continuous. The
derivatives of B with respect to r need not be continuous.

(i) The total pressure from inside and from outside of the boundary must be equal.
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(iif) The fluid velocity u® satisfies the condition

[un)'a]inside = [ua)'a]outsidw

where A, are the covariant components of the normal to the hypersurface separating
interior and exterior.
(iv) The magnetic field 4° satisfies the condition

[haj'a]inside = [ha}'a]outside'

5. Static solution

For static case, functions 4, B, C are functions of r only and equations (3.13), (3.14)
are identically satisfied. Without loss of generality, we can choose

C=logr

so that the line element (3.2) reduces to the canonical form. The equations (3.10) to (3.12)
reduce to

1 2 1 n?
e_28<——§+—A1>=—2—+—p~+—4~, (5.1)
r r r pPo T
A B, 1 n’
e_28<A11+A12+—’ —A,Blm—l——2)=£+—4, (5.2)
r roor po T
1 2B 1 n*
—2B 1
S i ) [ 5.3
¢ <r2 r ) r’ * (5-3)
On integrating equation (5.3), we get
0 n? o«
e 1—<—>r2+—2-~9, (5.9)
3 r T

where o, is a constant of integration. From equation (5.1) we have
et =3 (1+8)e P [ Prdr+yse?, (5.5)

where 7y, is a constant of integration. It is interesting to note that the equation (5.2) is
identically satisfied by these solutions. Moreover, the effect of the magnetic field can be
accounted in the universe filled with the isentropic magnetofluid. We claim that the static
solution found here is a generalization of Schwarzschild interior solution as well as that of
Nordstrom-Jeffery solution. This claim can be justified by considering the following
particular cases:

Case (i). Magnetic field is not present
Here h = 0 < n = 0 and é # 0, so that equation (5.4) reduces to

e = (- @) 2o ‘_"rg (5.6)
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This solution has singularity at r = 0. One can avoid it by choosing «, = 0. Conse-

quently
—2B 5 2
e =1- g r-. (57)

Replacing r = rfr,, we have a static solution

e =1 = (5.8)
where
R* = Eriz = 3 .
0 8nGog
The equation (5.5) becomes
et = 13V 1—R2/R:—/1—r*R?), (5.9)

where R, is a suitably chosen constant of integration. Note that the equation (5.9) is for
a perfect fluid as found by Schwarzschild (Taub, [11]).

Case (if). Magnetic field in vacuo
Here 6 = 0 and h+# 0. Equations (5.4) and (5.5) yield

e =et=1+— - =, (5.10)
r

when y, = 0. This solution agrees in form with Nordstrom-Jeffery solution.

Case (iii). Empty space-time
Here 2 =0, 6 = 0, so that equations (5.4) and (5.5) reduce to

e-‘ZB — e2A — 1__

—. (5.11)
r

This solution is the Schwarzschild exterior solution. The constant «, is usually replaced
by ae = 2GM/c? so that the solution (5.11) represents the gravitational field outside a
spherical mass M centred at r = 0.,

Now we find the region of validity of a static solution of the relativistic magneto-
hydrodynamic field equations. Let the region be restricted to

0 <7< 7o- (5.12)

Exterior to the hypersurface y = y,, there may be an empty space-time permeated by the
magnetic field. Then the solution (5.10) can be fitted as the exterior solution. If the exterior
to p = 7y, is an empty space-time, then Schwarzchild exterior solution (5.11) can be fitted.
If the exterior to y = y, is a space-time filled with a perfect fluid, the Schwarzschild interior
solution presented in case (i) can be fitted on the cavity filled with the magnetofluid.
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6. Non-static solution

We obtain the non-static solutions of the field equations (3.10) to (3.14). From equa-
tion (3.14) we have

B, 1) = =2C(r,1)+B(r,0)+2logr 6.1

and from equation (3.13),

eC, = e, (6.2)

where fi; i1s a constant.
On using equations (3.14), (6.2), equation (3.12) becomes

e 28(2C,,+3C,*—2C,B,)) = e B2 C~5—n%e 4. (6.3)

This equation holds true for all ¢ if it holds true for t = 0. Hence by taking

C(r,0) = logr,t = 0, 6.4)
equation (6.3) reduces to
1 2B 1 B2
~2B L 0
5 —— =5 - —F - -z =9, 6.5
¢ (r2 T ) S o r* (6-3)
which on integration, gives rise to
e\ B Bt n* o«
BRI R I S R R e 6.6
¢ (r) { 3Pt EEtE Y (66)
where «, is a constant of integration. Again from the field equations (3.10), (3.12) we get
A,e* +Be* = 1 (1+6)e*? (6.7
whose solution is
e =3 (1+8)e B[ e Prdr+ye®, (6.8)

where y is an arbitrary function of 7. When f, = 0, y = 7y, this solution reduces to a static
solution. In the absence of the magnetic field (A = 0), the resuits in this section reduce to
Taub’s [11] results for isentropic hydrodynamics.

7. Time dependent solution
From equation (3.14), we get
B = =2C+f(1), a1

where f(r) is an arbitrary function of r. Tt is always possible to choose the spatial variable
r by coordinate transformation (See Taub [10]) such that

B = —2C. (1.2)
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From equation (3.13), we have
(€’ = /3 B(0)e?, (1.3)

where fi(z) is a function of 7 and accordingly the solution is referred as time dependent
solution. Consequently (3.12) reduces to

e*C12C, +7C %) = e ¢ —5—nPe 4 _premC, (7.4)
We have on integration

2
)
C2=e g %e—mc_ ge—ac+nze~sc+ ge—7c’ (1.5)

where « is a function of 7 only. On setting F = ¢°, equations (7.3) and (7.5) reduce to

F“ = \/§ ﬂeA, (76)
Fo= J3F 2| (g2 “_z) —s(F- 2 2+3F2"3(n2+F2"3)v ' (1.7
PN 46 25 1 '

By keeping t constant and taking F = F, when 1 = ry, equation (7.7) yields

F

F¥3qF
J S = Tr—Tro. (7.8

Fo \/§ [(324— %) -6 (F—- 2%) +3F2’3(n2+F2f’3)]

Subtracting equation (3.12) form equation (3.10) and using equation (7.2) we get

e A0, +6C 2 ~2C,4,) +€*(6C,2+2C,, —2C, A} = — L —5. (19
Po

Substituting p from equation (3.4) and F = &3¢, we have
1/F(e #F ), + F'3eX(F, —F,A) = —3[2(1+9). (7.10)
and by equation (7.6} it reduces to
V3 F'3F.2(F, s
= By —{—] = -3 (1+0). 7.11
Fﬁ4 573 \F.), 3(1+9) (7.11)

On eliminating F from equations (7.8) and (7.11) we get a consistency condition to be
satisfied by « and f§ as

a, = /3 B(1+9). (7.12)
The line element corresponding to this solution is
2F 2 2 F2/3
ds* = %’-TB“T dit— O P g T ao?, (7.13)
¢ ¢ ¢
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This can be transformed to

2F 2 r 2F—4/3 F2/3
ds? = 0t - 10T g T go?, (7.14)
¢ c ¢
where F is given by
F
F**dF
J 1 ="—"os (7.15)

2
703 [(1/3+a2/45)—5 (F— 2—2) +3F?3(n? +F2/3)—|
and the consistency condition (7.12) reads as
o = (t—1ty) (14+9). (7.16)

Equation (7.10) determines the gravitational potential 4 and the pressure is evaluated
from (3.4).

8. Concluding remarks

This paper presents the solutions of the Lichnerowicz’s [12] magnetohydrodynamic
field equations and the boundary conditions to study the self-gravitating astronomical
objects which possess strong magnetic field. From static, non-static and time-dependent
solutions it is apparent that the magnetic field term is present in these solutions. In absence
of the magnetic field, Taub’s [10, 11] results are recovered and for pure magnetic field,
the static solution reduces to the Nordstrom-Jeffery type solution. A solution for the
pure magnetic field can be interpreted as the magnetic field of a point source situated at
the origin and identifies the constant n as the magnetic pole strength a point source.
Despite the fact that a magnetic monopole is a physical fiction, the strong magnetic field
which is present in astronomical systems does not rule out the possibility of the magnetic
monopole from theoretical considerations.

The authors’ thanks are due to Professor A. H. Taub for remarks on an earlier version
of this paper and to Professor J. V. Narlikar for valuable discussions. We thank the referee
of this paper for modifications. This work has been made possible by the University
Grants Commission’s grant to one of us (T. H. D.).
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