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Diffraction dissociation of pions and kaons is discussed in terms of the pomeron current
model. Pomeron exchange is represented in this model by an effective current-current
interaction, where the pomeron current ¥, has two components ¥, = Vy,+ V,,, the first
being central and conserved and the second peripheral and nonconserved. Vig and V3,
correspond to interactions of sea and valence quarks respectively at the diffractive vertex.
We construct explicit amplitudes for Nm — Nz*, NK - NK* (n*, K* are resonances or
partial waves of multiparticle states with any spin and parity). Two form factors (one form
factor) determine the transition vertices 7 — n*, K — K* to unnatural parity (natural
parity) states #* and K*. The model is shown to have no difficulty in reproducing the
polarization observed in pion and kaon dissociation to any final state. Other properties of
the model are discussed.

1. Introduction

The pomeron current model is a unified phenomenological description of diffractive
interactions in which pomeron exchange is represented by an effective current-current
interaction. The pomeron is treated as a particle with spin one and large mass which
couples to a nonconserved current V. This pomeron current ¥, determines the properties
of diffractive amplitudes in the same way that the electromagnetic current determines the
properties of photon exchange amplitudes. For this model to be successful it is necessary
that (a) diffractive interactions factorize, and (b) the approximations inherent in treating
the pomeron as a spin-one object are not too drastic. Because of the small siope of the
Regge pomeron trajectory this latter approximation seems to be a rather good one for
limited momentum transfer (say [¢| < 1 GeV?), but not for large momentum transfer.
Thus the model only purports to describe diffractive interactions in the region of limited |¢].
All types of diffractive reaction are included in this description, however.

This type of model made its first appearance in the paper by Wu and Yang [1], who
showed that the shape of the pp differential cross section can be fairly well represented
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by the fourth power of the nucleon electromagnetic form factor. They made no attempt
to take spin effects into account; the pp elastic amplitude was simply written as a product
of form factors with a fixed s dependence. Nevertheless, the essential ingredients are all pre-
sent in the Wu-Yang model. It is easy to include spin effects by reinterpreting the Wu-Yang
model as a current-current model and then giving the external particles spin. For nonzero
spin the matrix elements of the effective current operator contain several form factors,
and complicated spin-dependent scattering amplitudes can be constructed. The current-
-current form of the Wu-Yang model has been discussed by many authors [2-6], generally
under the assumption that ¥, is a conserved current.

This assumption is motivated by an analogy with photon exchange (the so-called
pomeron-photon analogy) which has a certain appeal. It is attractive to think of hadrons
as extended objects which are probed by spin-one particles, the photon and the pomeron
respectively, in electron-hadron scattering and diffractive hadron-hadron scattering. If
this analogy makes any sense then it is possible that the pomeron current operator V,
resembeles the 7 = 0 electromagnetic current operator.

Further progress along these lines was discouraged by the observation [4] that if ¥V,
in conserved then all inelastic diffractive cross sections must vanish in the forward direction.
This contradicts experiment, and obviously the model with a conserved current must
be augmented in some way. The simplest extension of the model which preserves factoriza-
tion is to include in the pomeron current ¥, a second, nonconserved component. Then
inelastic diffractive reactions receive a contribution in the forward direction, and the
main difficulty with the older mode! is removed. This version of the Wu-Yang model,
with each diffractive vertex having two components rather than one, was introduced by
the present author [7]. A qualitative formulation of the same model in terms of valence
and sea quark interactions at the diffractive vertex was suggested at the same time [7].
We turn now to a description of this model.

(a) Current-current formulation

A diffractive reaction a¢+b — c+d (here the final states ¢, d may be partial-wave
states of multiparticle systems) is described by the s-channel amplitude

caap = Ac|VJad (d|V¥|b), (1.1
where A is a constant. The pomeron current ¥, has two components
Vi=Viu+ Vo (1.2)

where V,, is conserved and V,, is nonconserved. [nelastic matrix elements of V,, vanish
in the forward direction, but forward ¥,, matrix elements do not vanish (unless parity
invariance forces them to do so). However, both V,, and V,, contribute to elastic vertices
in the forward direction. A very important assumption we shall make is that V', corres-
ponds to a central distribution of matter at the diffractive vertex, while V,, corresponds
to a peripheral matter distribution. This assumption is most directly stated in terms of
the form factors associated with the vertex. The central current ¥, has form factors
which resemble electromagnztic form factors (that is, roughly exponential, and not falling
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extremely rapidly with ¢). The peripheral curent V', has form factors with a much sharper ¢
dependence. This model shares certain features with the so-called two-component models
of the pomeron [8]. However, it goes beyond these models by providing a direct connection
between elastic and inelastic diffractive scattering.

By introducing an isoscalar nonconserved current V,, into the model we are
implicitly extending the pomeron-photon analogy. The new current might be related to
the 7 = 0 component of the weak neutral current. However, we do not wish to pursue
this speculation here.

(b) Quark-parton formulation

We shall use the following quark-parton picture of hadrons to gain insight into the
physical meaning of the operator current model just described. A hadron consists of
valence quarks and a sea of qq pairs. The sea quarks correspond to a restoring force holding
the valence quarks together, and we assume these sea quarks are centrally distributed.
But the valence quarks, which would not be confined without this restoring force, are
assumed to be peripherally distributed. This explains why nN charge exchange and other
reactions which involve valence quark exchange are strongly peripheral. (Our assumption
may seem to conflict with the standard quark model, where the lowest-energy wave func-
tions tend to concentrate the (valence) quarks toward the center of a hadron. However,
the quark parton model is a scattering model and not a bound-state model, and a hadron
at rest has no meaning in the quark-parton description. Conventional quark model results
certainly cannot be translated without change into the language we are using here). Thus,
by assumption, sea quarks and valence quarks correspond to central and peripheral
distributions of matter within a hadron. We identify the diffractive interaction of sea
quarks and valence quarks at a diffractive vertex with the currents V,, and V,, respectively.

Although this identification does not have a clear theoretical motivation it is by no
means arbitrary, as we see from the following argument. At an inelastic vertex V,, repre-
sents the interaction of a sea qq pair with a pomeron which breaks this pair apart. The
two ex-sea quarks combine with the valence guarks already present to form two hadrons.
But this process cannot occur for vanishing z, because a massless pomeron has zero four
momentum and hence it cannot break apart the qq pair. This corresponds to ¥, being
conserved, so that forward inelastic V,, matrix elements vanish. The identification of ¥,
with a sea quark interaction is therefore quite plausible. Valence quarks, of course, scatter
as independent objects and they can be scattered even by pomerons with very small four
momentum. This corresponds to V,, being nonconserved. Note that for elastic vertices,
V,, contributes in the forward direction because the qq pairs are not broken apart in this
case and there is no reason why this interaction cannot occur at ¢t = 0.

In Refs [7] we have discussed the qualitative agreement of our model with experiment.
Referring the reader to these papers for commentary on elastic scattering and nucleon
dissociation, we shall briefly describe here the pion and kaon dissociation data which our
model is supposed to explain. (See Refs [9-11] for data on # — (3n), (KK ) and Refs [11-17]
for data on K — (znK), (KKK)). Generally speaking, the pion and kaon data are quite
similar.
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(1) Diffractive transitions which do not change naturality dominate the pion and kaon
dissociation data. However, final states with natural parity are also present, and their
subordinate role can be partly, if not entirely, attributed to the fact that = and K dissocia-
tion into natural parity cannot proceed in the forward direction (because of factorization
and parity invariance [18, 19]).

(2) There is a strong dependence of the slope of the near-forward cross section on the
mass M of the final 3n), (KKn), (nnK) or (KKK) system. In the = — (37) case the slope
is B~ 12-14 GeV—2 near the effective mass threshold, while for masses several hundred
MeV larger B~ 5 GeV~2. Near mass threshold the cross section is approximately exponen-
tial for |7| < 0.4 GeV?; for larger |¢{ the cross section is flatter. The forward peak (with
1] < 0.4 GeV?) is very sensitive to the final mass M, and it decreases in height and flattens
as M increases. The cross section for |¢| > 0.4 GeV? is much less sensitive to M, and
when M has reached the mass range where the forward slope stops decreasing, the entire
cross section out to the largest [¢| values is roughly exponential.

The pomeron current model offers a qualitative explanation of this slope-mass effect
[7]. Matrix elements of V,, (which dominate the small-7 region) are necessarily quite
sensitive to the final mass, and they decrease rapidly as this mass increases. Matrix ele-
ments of V,, (which dominate the region with larger |¢|) are not very sensitive to the
final mass. This explanation, which is made possible by the two-component nature of
the diffractive vertex, has yet to be tested by detailed numerical fits to data. But it is improb-
able that one cannot achieve reasonable fits in this way.

(3) t-channel helicity conservation (TCHC) is observed in # — n*. There is violation
at the ten percent level with one unit of helicity flip allowed. Two or more units of s~channel
helicity flip are not observed in any partial wave.

For any transition 7 —» n* or K — K* to a state with unnatural parity, TCHC can
easily be arranged in the pomeron current model by a suitable choice of meson form
factors (see Sec. 2). It is just as easy to introduce an arbitrary amount of TCHC breaking
by allowing one unit of z-channel helicity flip. Helicity flip of more than one unit in the
t-channe] is forbidden in this model for any value of 7.

(4) For the K — K* partial waves with unnatural parity, TCHC is also observed,
with one exception. The Q region has recently been resolved into two resonances Q, (1300)
and Q,(1400) with the principal decay modes Ko and K*=n respectively [17]. SCHC is
observed in K — Q, and TCHC in K — Q;. Otherwise there seems to be no strong
violation of TCHC in any partial wave.

For dissociation into 1+ mesons it is as simple to arrange for SCHC as it is for TCHC
by a choice of meson form factors (see Sec. 2). Thus the pomeron current model can
accomodate Q, and Q, on the same footing. However, SCHC cannot be arranged for
mesons with spin two or larger. (For such mesons SCHC is also impossible in the Regge
model, of course).

(5) The natural-parity partial waves vanish in the forward direction, as they must if
factorization holds. The most prominant ones are = - A, and K — K*(890), K*(1420),
all of which violate the Gribov-Morrison rule (if these are truly diffractive reactions).
In = > A, only the helicity states 1 = +1 in the Gottfried-Jackson frame are populated
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at the highest energies. Less accurate data indicates that the same may be true for K —» K*
at sufficiently high energy. The helicity 4 = 0 in the Gottfried-Jackson frame is forbidden
by factorization and parity invariance [18, 19]. However, A = +2 for A, and K*(1420)
is possible away from ¢ = 0. The rather good high-energy data on = — A, [9] show no
indication that 4 = +2 helicity states become populated for nonzero f.

For natural-parity partial waves the pomeron current model allows only the Gott-
fried-Jackson frame helicities 2 = -1 (see Sec. 3). This holds for any ¢, in contrast to the
Regge pomeron model where it is only true for ¢ = 0.

There are weaknesses in the present model which one should keep in mind.

(i) There is no known theoretical justification or basis for a current-current description
of diffractive interactions. The quark parton version of the model only slightly ameliorates
this deficiency by providing some physical insight into the otherwise obscure existence of
the pomeron current operator.

(if) The energy dependence of the model is too inflexible because the pomeron spin is
exactly equal to one. This means that all of the In s effects observed in the present data are
ignored. It is an open question whether or not these effects persist at asymptotic energies.
If they do not, then the pomeron current model is a candidate for an asymptotic model.

As an illustration of the pomeron current model we shall construct amplitudes for
pion and kaon dissociation into states with arbitrary spin and parity. Explicit amplitudes
for 1 » n* and K - K* are given, where n*, K* are resonances or partial waves of
multiparticle states such as 3z, 7zK. In many respects (energy dependence, slope-mass
effect, peripherality) the properties of these amplitudes are reasonable (at least, they
can be arranged to be by a suitable choice of form factors). We shall concentrate on a
different point, namely polarization. It wili be shown that the model can easily reproduce
the observed polarization in every diffractive # — n* and K — K* transition which has
been studied experimentally.

2. Dissociation into final states with unnatural parity

We consider diffraction dissociation Nn — Nzn*, NK — NK* into final states n*,
K* with the quantum numbers of the pion, kaon respectively. These states have arbitrary
spin L and unnatural parity. The dissociation channel or s — channel is called a+b — c¢+d
and the t-channel is called D+b — ¢+ A where 4 = a, D = d. The diffractive transition
(e. g. n > a*) is d = b, and the elastic transition N—-> N is g - ¢.

Let us begin with the r-channel helicity amplitudes

Sop = A(cA|V,|0> O|V¥|Db). 2.1
The nucleon matrix element is
<CA|V14[0> = l70['));4le°+",';t\quql‘l'i'quhl‘l:] VA! (2'2)

where g, = (p.+p4),, is the four momentum carried by the pomeron and ¢ = ¢ In Eq. (2.2)
the term g,An(f) corresponds to spin-zero exchange in the z-channel, and since this leads
to amplitudes of order O(1/s) relative to the dominant spin-one exchange amplitudes we
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shall simply drop the form factor An(¢) in the nucleon matrix element. (This does not
imply that the current in Eq. (2.2) is conserved, for one can always project out a conserved
component from any nonconserved current matrix element.) The meson matrix element is

(O, IDbY = @p,, ., M, 2.3)
where @, is the spin-L wave-function of n* and
M,w, v, = PDu(pb pb)w -~-van*
+8uni(Po -+ Po)v; v Bar
+q,(Ps - Po)vy oo vy Pinne 2.4

Here the term containing g/« corresponds to spin-zero exchange in the r-channel, and
we ignore this term.

We see that the nucleon vertex is essentially determined by two form factors f(2),
gn(?) and the meson vertex by two form factors f.(t), g.+(¢). In accordance with Eq. (1.2)
we regard each of these form factors as a sum of two terms corresponding to central and
peripheral distributions of matter at the respective vertices. The central form factors are
roughly exponential, like electromagnetic form factors, while the peripheral form factors
are much more steeply peaked in ¢ and contribute only for small |¢]. We note that the
nucleon current (2.2) is effectively conserved (with /4y absent), and when calculating this
matrix element it does not matter whether or not we assume V), is conserved. Therefore
the nucleon form factors fy, gy are just the sums of form factors corresponding to vV,
and V,, in Eq. (1.2),

In=faitfees g8 = it Ene (2.5)

Things are more complicated for the meson form factors, however, since Eq. (2.4)
corresponds to a nonconserved current V,. If instead ¥V, were conserved we would
have to make the following changes in this formula:

pDu - (tpDu—quq : pD)7 quv - (tquv_quqv)a (26)

as well as requiring that 4. = 0. As we have already mentioned twice, terms which are
proportional to g, correspond to spin-zero t-channel exchange, and such terms we can
ignore. Thus the only effect of the changes (2.6) is to multiply the form factors in Eqg. (2.4)
by ¢. The meson form factors corresponding to the decomposition of ¥, in Eq. (1.2) are
therefore

Jur = oy Hfas Gre > 181+ Groae 2.7
The factors of ¢ multiplying the ¥, form factors f;4; and g, are the ones found by Ravndal
[4]. They cause the 1 — n* vertex to vanish in the forward direction if the pomeron current
does not have a nonconserved component.

The calculation of the helicity amplitudes (2.1) is straight-forward. We find

Gﬁfc(:i)bo = MTy/my \/E)L_ 1<CA| V40>
X {50DPD;;(T:11;/ my \/ Df (D + =§z:,i . 5nD8nu(pD)Grllgn‘(t)} s (2.8)
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GL = [RL)Y(L4m)Y(L—m)1]"?,

Ty = 12 =2t(m} + mg)+(mg —m})>.

729

(2.9)
(2.10)

Egs (Al), (A2) in Appendix A lead immediately to the formula (2.8). Note that ¢-channel
helicity is conserved if g.. = 0; otherwise #-channel helicity can flip by one unit. These

statements hold for arbitrary final spin L.

Inserting the matrix element (2.2) into Eq. (2.8) and keeping only the leading order

terms in s we find (here m is the nucleon mass)
Gif 80 % ()70 2 s VIt M1 —d4m?) ™1
* (Typ/myg J2) T (1 T gl 2m( fu— 2mgy) +(dm* = t)gy],
Gofilbo = (=) SUTy/my JDF 7M1 my (2 Tyy) (1—4m?)~ 12
X [Tjp S 201+ mG — mi)gn] [2m( f—2mgy) +(4m* —1)gy],
Gif2crio & F V28l —4m®) 7121 Ty)
X (Typlmy V2 gl fy—2mgn),
Gof 00 = s/ MTa/my 2O~ (1/my J2 Ty)
x (t=4m?) "2 fy—2mgn) [T fro+ 20t + Mg — 1) ge].
The cross section is
do 1 VIE | ( T
dt ~ lén m" Tﬁ, My /2

X {(LYUTS fre+ 20t +m) —mPg, P +8|timI(L+ DL —=1)!| g’}

) (A2 +11] 1gn®

From Eq. (1.1) we calculate the s-channel helicity amplitudes
Gifdao = M TufmyJ2)"~ (=) c|V*|a) { - pg, LI [(L+ YL —d)1]~ 12
X (Tapl Mg | D2 w+ OZ lenu(pa)(ﬂ"G,f(L—l)?
n=0,%

x[(L=t+d—mWL—1—d+n)] " "?d§ 31 (18w}
where Eqs (A2) and (A3) have been used and the angle y, is defined by
STy sin gy = 2m, /& ,
STy, cos yq = —(s—m?+m2) (t+m3 —my)+2m3(m2 — mp),

S% = s?—2s(m*+ m3)+(m* —m?2)*.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
(2.18)
(2.19)
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We are particularly interested in helicity amplitudes for L = 1. For large s these are

Dieo ® 7 PNy (2.20)
(s) 1/2—c¢ )'
f:tl —c0 ~ +( ) ?/_—‘sltlfn‘gN’ (221)
c(g)co ~ Z—fn[(t +my _mb)fx‘+2gn'} (2.22)
d
8o m (=) J 1] gn[(t+m2—md)frut2g,0]. (2.23)

Note that s-channel helicity is conserved at the nucleon vertex if gy = 0. (If ¥V, were the
I = 0 electromagnetic current then gy would be proportional to the nucleon isoscalar
anomalous magnetic moment, which is small). At the meson vertex SCHC holds if f. = 0.
Therefore, in the case L = 1 we can arrange for SCHC as easily as we can TCHC. But
this is only true for L = 1.

3. Dissociation into final states with natural parity

Now we turn to diffraction dissociation into final states n*, K* with natural parity
and arbitrary spin L.

The r-channel helicity amplitudes are given by Eq (2.1) with the nucleon vertex as
in Eq. (2.2) and the meson vertex as in Eq. (2.3), but now

Muvl evp, guvlaﬂp;pg(pb pb)vz van'(t)' (31)

There is only one form factor at this vertex. The tensor (3.1) has the same form for conserved
and nonconserved currents. Therefore the form factor which corresponds to the current
decomposition (1.2) is just a sum

fz‘ =fu‘l +f1:‘2 (3'2)

of central and peripheral form factors.
Calculating the f-channel helicity amplitudes we find

A _
Gsfc(:i)-.t 1o = Ei ’\/—i my(Ty/my \/Z)Lezt 1,;(PD) CcA[VH[0) f s, (3.3)

while f&p0 = 0 for D # +1.

Here we have used Eqs (Al), (A2), (A4). In the current-current model only the
t-channel n* helicity states D = +1 are populated. #~channel helicity of two or more units
is strictly forbidden in this model, and the helicity state D = 0 is forbidden by parity
invariance {18, 19]. This leaves only the D = =1 helicity states. Experimentally these are
the only ones observed in A, production at 40 GeV {9].
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In the Regge model one obtains the same result at ¢+ = 0. However, away from ¢ = 0
the helicity states |D| > | can also play a role because the Regge pomeron spin is not
exactly one. A good test of the Regge model would be an experiment on A, polarization
for |t| > 0.5 GeV? (the present data at 40 GeV [9] is limited to the range 0.17 < [¢] <
< 0.33 GeV?). If the helicity states D = +2 in the Gottfried-Jackson frame become popu-
lated for large |¢|, then the changing spin of the Regge pomeron plays an essential role.
If not, then the pomeron current model should provide an adequate description for
[t} > 0.5 GeV? as it seems to do for smaller |#! values. In this same experiment one would
also test factorization at large |z! by measuring the contribution of the D = 0 state in the
Gottfried-Jackson frame.

Keeping only the leading terms in s we obtain explicit formulas for the helicity ampli-
tudes;

GYfE% 1o
is \/m ( T

D2 —am» 2 \m, /2

Aslt] T \F71 ) 35
(md \/i) fx“(fN rngN)' ( M )

~ i(_)l/2+c

) fwl2m(fy—2mg)+(@m*—nen], (3.4

Le ~ ] —
Gifelesto ® 1\/2'0__4,”2)1!2

The cross section is
do 1] (L+1)!(L—1)!< Ty

dt ~ 8n (2L)!

2L-2

) PO+ 11 2] (3.6)
My /2

In Ref. [11] the A, production cross section with the factor {7] removed is compared
with the ones for A; and A; production (these do not vanish in the forward direction).
Little difference is found: all three are roughly exponential, with the A, exponent lying be-
tween the larger A, exponent and the smaller A; exponent, in accordance with the usual
slope-mass effect. Evidently the production mechanisms for A,, A, and A; are quite
similar. In the pomeron current model this tells us that the form factor f, for = — A,
is similar to the ones for 7 > A;, A; (here we mean f,. since TCHC implies g, ® 0 in A,
A; production). In particular, the corresponding V,, form factors f,., must be similar
because the V', form factors do not contribute in 7 - A, ; for small |¢| (see Eq. (2.7)).

APPENDIX A
Some formulas needed to obtain results given in the text are the following:
(P - PO "™ Py, 0, (o) = Son(Tasma DL ED) , (A1)
Gg‘val v (PD) = n=§:}:1 G;}Gﬁ:»lﬁnv,(PD)‘pD—n,vz...v,_(PD)s (A2)

Py ... P vL¢dv1 vL(pd) = (“)ddflid(Xd) (Typ/my \/i)LL!/\/(_ifﬁ (A3)

w

i
8uvaﬁ8nv(pb)pbapbﬁ = *0; 1,n ’i‘ Tye’s 1(Pp)- (Ad)



APPENDIX B

Here we give a general formula for the construction of f-channel helicity amplitudes
in the pomeron current model for any two-body diffractive process ab — cd

Sop = —Adp_p .~ 408 A(Dgps(1)
where for large s

cos 0, = isin 0, & —2s|¢|/ T, T

The form factors g, ,(¢) and gp,(¢r) which determine the vertices @ — ¢ and b — d are defined
as follows.

4 = Eml(q) {cAIVH0),
Tpy = enlq) <O1V*|Db).

1l

Then introduce two different t-channel CM frames Q. and Qp, (these are related by
a rotation about the y-axis through an angle —0,);

- -

QcA: q = pc+;A =0, 27c = —EJA = ;1 = 2’ c":4 = 5m,c~AgcA(t);
Opp: 4 =Dpp+py=0, pp=-py=q=2, Tp= O, p~8s(1)-

Here carats denote unit three-vectors, and g is the direction chosen for the spin quantiza-
tion axis of the polarization vectors ¢,,(g) associated with pomeron exchange. From angular
momentum conservation the functions T7, and T}, have the simple forms shown above
in the frames Q.4 and Qp,, respectively. This defines the form factors g.,(f) and g,,(1)
as linear combinations of the covariant form factors which determine the matrix elements
(cA|V,|0> and {O|V,|Db).
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