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We point out that the mass-dependent polarization effects observed in diffraction
dissociation can be attributed largely to two simple causes: (1) the increasing importance
of higher partial waves with increasing final mass; (2) a kinematic suppression of helicity
flip for dissociation into large-mass states. These lead respectively to (a) strong violation of
s-channel helicity conservation and (b) a much weaker violation of z-channel helicity conser-
vation for large diffractively-produced mass. This is observed experimentally. The kinematic
suppression of helicity flip for large mass is a new result which we prove in this article. Recent
data is discussed, and the implications of our result for the triple-pomeron vertex are
mentioned.

One of the long-standing problems in diffraction dissociation is to understand the
strong polarization effects which characterize this type of process. The observed polariza-
tion depends on the mass M of the diffractively-produced system. To describe the experi-
mental results it is conventional to use the terminology s-channel/s-channel helicity conserva-
tion (SCHC/TCHC, respectively), not because these expressions have any deep theoretical
meaning, but because they correspond to the two extreme cases which encompass ali
possible polarizations. For M near the real mass threshold M, both SCHC and TCHC
are strongly “broken”’ (in the sense they are very poor approximations to the data). As M
increases TCHC improves noticeably while SCHC does not. One observes this in certain
azimuthal-angle distributions which must be flat when helicity is conserved along the
relevant axis, and which flatten with increasing M in the ¢-channel case but not in the
s-channel case. TCHC seems to become a fairly good approximation to the data when
M— M, is large enough. On the other hand, SCHC may improve with increasing mass,
but only very slowly, and in the mass region presently explored SCHC remains strongly
broken.

In this article we point out that mass-dependent polarization effects of exactly this
sort are to be expected on the basis of kinematics alone. Indeed, it would be remarkable if
such effects were not observed in the high-mass region. This does not mean that polariza-
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tion in diffraction dissociation can be attributed entirely to kinematics. It cannot. The
observed polarization is due partly to kinematics and partly to dynamics. In the low-mass
region dynamics plays the leading role, while kinematics largely determines things for
higher masses.

Qualitatively one can easily understand why TCHC is always a better approximation
than SCHC for diffractive dissociation into states with large angular momentum. In such
cases it cannot be otherwise, because of the pronounced asymmetry between the s- and
r-channel helicity amplitudes. The ¢-channel amplitudes can be approximated by pomeron
exchange which limits r~channel helicity flip to one unit. But a/l values of s-channel helicity
flip are allowed (this follows from crossing). For example, exact TCHC implies that every
s-channel helicity amplitude is important (except in the forward direction). Generalizing
slightly to allow one unit of #channel helicity flip cannot affect this situation much. In
particular, there is no way to arrange that all the s-channel amplitudes with large helicity
flip become unimportant. Therefore when systems with large angular momentum are
diffractively produced, one can be sure that TCHC will be better than SCHC.

This argument implies that SCHC should remain strongly broken even when the
final mass is well above threshold. For, it is a known experimental fact that the average
angular momentum {J) of the final system increases with increasing mass M. To get an
idea how rapid this increase is, we quote some data from Bosetti et al. [1] for the reaction
aN - (37)N;

(I = 055+ 1L.1(M—M ),

where M is the effective mass threshold. Presumably this rather rapid increase of (J)
with A is characteristic of diffraction dissociation generally. If so, then because of the
steadily-growing number of s-channel helicity-flip amplitudes it seems unlikely that an
increase in M (by a limited amount) will lead to an improvement in SCHC. Therefore
we have a simple qualitative explanation for one of the two major polarization effects
in diffraction dissociation.

This does not tell us why TCHC becomes a better approximation with increasing
masses. The following theorem answers this question, at least at the qualitative level.

THeoreM : For diffraction dissociation into a state with very large mass M and definite
angular momentum the helicity of this state is preferentially the same as the helicity of the
initial state because there is a strong kinematic suppression of helicity flip. Roughly speaking,
each unit of helicity flip costs a factor \/t/M < 1.

This theorem is easy to prove within the context of two-body scattering processes. To
apply it to diffraction dissociation we observe that the dissociation amplitude can be
decomposed into a partial-wave series with respect to the final diffractively-produced
system. The theorem holds for each partial wave separately. In Appendix A we prove the
theorem above for the reaction # +7 — n* + 7 where the n* spin is arbitrary. In Appendix B
the proof is given for N+n — N*+7x with arbitrary N* spin. Because of factorization,
these results apply directly to more complicated reactions such as n+N — n*+N,
N+N - N*+N and N+N —» N*+N*,
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We cannot conclude rigorously that helicity flip is forbidden for large mass, because
constraints among invariant amplitudes could exist such that the kinematic suppression of
helicity flip is overcome and some other polarization results. The theorem tells us that,
barring this very special dynamical circumstance, helicity flip is suppressed. The existence
of such constraints is a purely-dynamical question which can only be decided by experi-
ment. However, for large diffractively produced mass, where many partial waves are
excited, it seems rather unlikely that the kinematic suppression of helicity flip is overcome
for each partial wave separately. More likely, the invariant amplitudes are independent
or only weakly dependent for each partial wave, in which case the kinematic suppression
takes effect.

In the statement of our theorem no mention is made of a particular channel because
at the diffractive vertex there is practically no difference between the s- and r-channel
helicity labels when the final mass is extremely large. To make this explicit we shall have
to introduce some notation. Diffraction dissociation amplitudes will be decomposed into
two-body partial-wave amplitudes; thus, symbolically,

T(xN - 3m)N) = ¥, Ty(xN - 2*N)D,(n* — 3n),

where n* is the three-pion partial-wave state with angular momentum J. The partial-wave
amplitudes T (zN — n*N) control helicity flip at the = — n* vertex. These partial-wave
amplitudes are two-body amplitudes which we call £&),. The direct or s-channel is @b — cd
with s = (p.+p.)% t = (p.~p,)*. The t-channel is Db — cA(D = d, A = a). The dis-
sociation vertex is @ — ¢ and the transition b — d is elastic.

The kinematic region we are going to consider is

s » m? > mi, mj, mi, |, (1)

where m, is the diffractively produced mass which is taken to be large compared with |¢|1/2
and the other three masses. In this region the s-f crossing equations are diagonal in the
helicities ¢ and a,

c‘.ﬁb = Z dD’d(Xd)db'b(Xb)fc(;})’b' 2

because the crossing angles [2] ., x, are both zero. The other crossing angles x4, ¥ do
not concern us here.

In the mass region (1) there is no distinction between SCHC and TCHC. Ciearly the
present data is far from this asymptotic region, and one may wonder how the theorem
above applies to this data. The answer is simple. Already for rather small masses
(say m,~ 2 GeV and even smaller) the kinematic suppression of helicity flip begins
to influence the helicity amplitudes in both channels. In the z-channel, where there are
only nonflip and single-flip amplitudes present, even a weak suppression of helicity flip
can have a noticeable effect. But for the s-channel amplitudes this will certainly not be
the case when the angular momentum J is large and many helicity-flip amplitudes are
present. For these partial waves m_ will have to be quite large before the kinematic
effect is strong enough to enable the s-channel nonflip amplitude to dominate all the other
ones.
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Admittedly this is only a qualitative argument. Nevertheless, it is striking that the
predicted behaviour is exactly what is observed in diffraction dissociation. There is little
doubt that the kinematic suppression of helicity flip implied by the above theorem exists.
The question is, what is its numerical effect in the mass region presently explored? We
suggest that this numerical effect is large for the partial waves with J > 2 for pion and
kaon dissociation, and J = 5/2 for nucleon dissociation. For these partial waves there
is a substantial asymmetry between the s- and #-channel helicity amplitudes and SCHC
should be definitely worse than TCHC. Furthermore, these partial waves are not dominant
in the lowest mass region; rather, they become important for somewhat larger mass where
the kinematic suppression of helicity flip is becoming stronger. The choice of angular
momentum J = 2 {J = 5/2) for bosons (fermions) as the division between dynamical and
kinematical polarization is somewhat arbitrary, of course. In the lowest partial waves
there is no kinematic preference for SCHC or TCHC and any polarization is dynamical.
In the higher partial waves we expect TCHC to hold for kinematic reasons. For some J
there must be a change-over. The data suggest that the angular momentum values we have
chosen are appropriate ones (sce below).

If our conjecture is correct then polarization in diffraction dissociation arises from
two main sources in the large-M region:

(i) the kinematic suppression of helicity flip in each partial wave, which strengthens with
increasing M and leads eventually to TCHC;

(i} the fact that the higher partial waves become more important with increasing M,
which sustains the SCHC breaking in spite of the spin-flip suppression.

There is no way to rule out dynamics as a third cause of polarization effects until diffrac-

tion dissociation is understood dynamically, at the quantitative level. It may well be that

dynamics continues to play some role even in the large-mass region. What we are suggesting

is that this role is only a minor one.

In the resonance region the proceeding argument makes it clear that the observed
polarization is mainly dynamical. This is the case for diffractive production of the 1+
mesons and the N* (1520), for example. An exception to this statement is the N*(1690);
TCHC seems to characterize the production of this J = 5/2 resonance. The large spin
and mass of the N* (1690) make it likely that kinematic effects are partly responsible for
the observed polarization. Two other exceptions are the J = 2 enhancements A; and L
in pion and kaon dissociation, for which TCHC is also observed.

In the remainder of this article we should like to discuss the data on pion, kaon and
nucleon dissociation in more detail than we have done so far. Following this, the implica-
tions of our theorem for the triple pomeron vertex are mentioned.

(1) Nm - (aN)r, NN - (zN)N
Let us first consider the data on nucleon dissociation into a 7N system. For this re-
action the effective mass threshold A/, and the real mass threshold M, = m,_ +my are

the same. Near threshold both SCHC and TCHC are strongly broken [3-5]. For increasing
mass M.y, the strength of the TCHC violation decreases noticeably while SCHC violation
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remains strong [3-5]. An early experiment [6] concluded that TCHC becomes a rather
good approximation in the region 1.6 < My, < 1.8 GeV. But more recent data [5]
indicates that TCHC violation persists in this region and extends to even higher masses.
The mass region 1.6 < M, < 1.8 GeV is dominated by the J = 5/2N* (1690) partial
wave. Evidently TCHC is only a rough approximation in N* (1690) production, at
least in the N — (zN) channel. The choice J = 5/2 for the separation of kinematic and
dynamical polarization seems to be reasonable in this case. For m, = 1.7 GeV the kinematic
suppression of helicity flip is substantial but not overwhelming, and some TCHC breaking
is to be expected. From Appendix B we find that one unit of helicity flip {in either channel)
costs a factor

— 2|t m? NI
siny, & (2 \/ft;'/mc) [(1—zn§g’mf)2+ —’;LTI <1+ 75) + ;217] 3

where m, = my. For m, = 1.7 GeV, sin g, is approximately
sin y. & (1.2) [¢|*1*[0.5+(0.87) {¢| +(0.12) {¢]*]~ /3,

and when }¢! is a few tenths of a GeV? then sin y, is not very small. Therefore, if TCHC
were almost exact for N* (1690) production then a dynamical effect would clearly be
implied.

(2) Nz - (mzN)r, NN — (zzN)N

The data on nucleon dissociation into znN is quite different. First of all, the effective
mass threshold M. =~ 1.4 GeV is substantially larger {7] than the real mass threshold
My = 2m_+my. The reason for this is well-known [8]; two-body intermediate states
(nN* in this case, with N* — nN) dominate diffraction dissociation into three-body
systems. This pushes the effective mass threshold up because the lowest N* state, the P,
(1470), has a mass nearly 0.4 GeV larger than m,+my. M, is therefore generally
several hundred MeV larger than M,,. Having seen the general trend in the N — (zN)
data towards TCHC with increasing mass, it is not surprising that a similar trend is observed
in the N — (nnN) data. (See Refs [9, 10} for N data and Ref. {11] for NN data). However,
the region near M,, is missing from the (n7N) mass spectrum, and correspondingly no
strong violation of TCHC is observed, although there is some indication that TCHC may
improve with increasing mass in N — (zzN) [9]. The J = 5/2 partial wave corresponding
to the N* (1690) is very important, and for this partial wave TCHC seems to be a fair
approximation. The same is true for higher mass [9], and therefore presumably, for the
higher partial waves. The onset of TCHC seems to occur in the N*¥(1690) mass region [9],
and presumably this occurs in the J = 5/2 partial wave. It seems reasonable to conclude
that J = 5/2 is the proper choice for the J-value separating (mainly) kinematic polarization
from (mainly) dynamical polarization. One unit of helicity flip costs a factor sin y. given
by Eq. {3). If the polarization of the N*(1690) partial wave is mainly kinematic then
some violation of TCHC is expected. However, this should by relatively weak, as the mass
m_, =~ 1.7 GeV is large enough to induce a suppression of helicity flip.
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(3) p+p — p+(charged particle+anything)

Next we mention an ISR experiment on diffraction dissociation into systems with
very large invariant mass, in which polarization was studied in the following averaged
fashion [12]. Elastically scattered protons were detected in coincidence with other charged
particles in the inclusive reaction pp — p+H, H — charged particle +anything. The
polarization of H was probed (not measured) by transforming the data to the rest frame
of the final system H and comparing it with predictions obtained from the hypotheses
of SCHC and TCHC for the production of H. The data was seen to be consistent with TCHC
and inconsistent with SCHC. This is, of course, the sort of polarization we have already
encountered in nucleon dissociation in the low-mass region. But here masses of 10 GeV
and larger are involved! For such large final mass one might think that the kinematic
region (1) has been reached, so that the crossing equations are diagonal in the relevant
helicities (see Eq. (2)) and there is no difference between SCHC and TCHC. Obviously
this is not the case. There is still a difference. The reason for this difference can only be
that states with extremely large angular momentum are involved, and the asymmetry
between the s- and r-channel amplitudes is so great that the kinematic spin-flip suppression
(which is very strong in this mass range) cannot overcome it. (The only alternative is that
dynamical constraints among invariant amplitudes are operative in many partial waves,
and this possibility we reject.) If this is true then there ought 'to be some indication that
the difference between SCHC and TCHC decreases with increasing mass. (Otherwise one
would have to doubt that SCHC and TCHC ever coincide, no matter how large the mass is.)
Fortunately, the data in Ref. [12] clearly show such a trend through the mass range
m? = 42—228 GeV2. Even for the largest masses there is a real difference, however. This
indicates that the kinematic region (1) is an asymptotic region in the true sense of the
word. Even for diffractively produced masses of 5 to 10 GeV the kinematic suppression
of helicity flip is not overwhelmingly strong, the crossing equations are not completely
diagonal, and TCHC is better than SCHC.

@) 7N - (3mN, KN - (znK)N

All experiments on the diffractive dissociation of pions and kaons agree that TCHC
is not strongly broken in the diffractive transitions n - (37), 7 — (KKn) and K — (z7K).
(An exception: SCHC is observed in a specific K — (nnK) partial wave which we discuss
later.) In pion and kaon dissociation the effective mass thresholds M are well above
the real mass thresholds M,,. For 7 - (3n), = = (KK7) and K — (nnK) these thresholds
are roughly 1.0GeV, 1.5 GeV and 1.2 GeV (see Refs [1, 13]). These rather large values
of M, clearly indicate that two-body intermediate states dominate the production mecha-
nism. (This is especially clear in = — (3n) where the intermediate state with lowest mass
is @ = mwp — 3n.) The situation here is rather like the N — (naN) case. Therefore it may
not be surprising that TCHC holds to a good approximation in pion and kaon dissociation
{1, 13] since the region near M, where TCHC breaking should be maximum is unpopu-
lated. The situation is nevertheless quite complicated, with very prominant dynamical
polarization effects in the mass region near M. In the dominant partial waves correspond-
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ing to m > A, and K — Q there is no asymmetry between the s- and ¢-channel helicity
amplitudes, and therefore any observed polarization is dynamical. The fact that TCHC
hoids to within ten percent in # — A, [13] can only have a dynamical explanation. Tt is
interesting to note that for = — (3n) the kinematic suppression of helicity flip is rather
strong even in the A; mass region. The crossing angle y. which determines the invariant
amplitude coefficients (see Appendix A) and therefore the spin-flip suppression is given by

L—[t|jm

COS ~r ———
Xe X i m?

4)
because the pion mass m, = m, can be neglected. Each unit of helicity flip costs a factor
sin . (see Appendix A) and for m, > | GeV and limited |#] this is a small factor. Therefore,
in the higher partial waves, TCHC should be rather a good approximation.-These partial
waves with L > 2 should be strongly influenced by kinematics. This applies to the 7 > Aj
partial wave, for example.

In the case of Q production the situation in the low-mass region is very complicated
indeed. Recent data [14, 15] have shown that two resonances Q,, Q, with different prop-
erties are produced in the reaction K+N - @, ,+N. Q, and Q, are J¥ = 1+ strange
mesons with masses 1300 MeV and 1400 MeV respectively. Their primary decay modes
are Q; - ¢K and Q, —» nK*. Q, production conserves s-channel helicity while Q,
production conserves f-channel helicity. In this sense Q, production is typical while Q,
production in atypical. The observed polarization in Q; and Q, production has a dynamical
origin. Even in this mass region the kinematic suppression of helicity flip is rather strong,
however. For larger masses where partial waves with L >> 2 are dominant, the kinematic
polarization should be quite strong. This applies to the K — L partial wave in particular.

(5) Triple-pomeron vertex

The behaviour of the dissociation vertex for large final mass determines the nature
of the triple pomeron vertex. In general, as pointed our by Sakai and Uschersohn [16],
this vertex depends on five variables. These can be chosen to be the masses squared ¢,, #,, #3
of the three pomerons and two angular variables ¢, ¢, which describe the polarization of
the undetected final system in a+b — (any)+d. After a moderately involved analysis
of the six-point function which determines the inclusive cross section, Sakai and Uscher-
sohn were able to show that TCHC implies the triple-pomeron vertex is independent
of ¢, and @,. The converse is also true; if the triple-pomeron vertex depends onlyon?; ;s
then TCHC holds in inclusive diffraction dissociation. Now we have argued in the present
article that TCHC will always characterize diffraction dissociation into large invariant
mass for simple kinematic reasons. If this is true then the triple-pomeron vertex is a function
only of the pomeron masses, for essentially kinematic reasons.

We should like to present a much simpler derivation of the result found by Sakai and
Uschersohn. First we notice that the triple-pomeron vertex can be regarded as a function
of t,, t,, t; and two of the pomeron helicities (as for any three-particle vertex, one of the
helicities is not independent). Second we notice that TCHC means that the pomeron has
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zero helicity in the Gottfried-Jackson frame. To be specific, let us consider the reaction
ab — ¢d for which the Gottfried-Jackson frame is defined by
Ec =0, ;lc = i’a’ E = i;a";c = ;as

where k is the pomeron three momentum and #, is the spin quantization axis for the
diffractively-produced state ¢. For simplicity we give the particles at the elastic vertex
b — d spin zero. Then the scattering amplitude in the Gottfried-Jackson frame coincides
with the continued r-channel helicity amplitude [17],

chaG(GJ) = cg(?)()‘

TCHC means that ¢ = 4, and by angular momentum conservation ths pomeron must
have zero helicity in this frame. This means that the two “external” pomerons at the triple
pomeron vertex have helicity zero, and the vertex therefore depends only on the three
pomeron mass variables.

APPENDIX A

Pion dissociation

Consider the pion dissociation process nn — n*n with spins 0+0 — L+0, where n*
is a multiparticle system with angular momentum L and the quantum numbers of the
pion. Typically n* = 3n, KKn, 5z etc. The formulas for the s- and t-channel helicity
amplitudes describing nn — w*n (with n* helicity ¢ > 0) are

(m, DG

L-¢
= 3 ()" ML-MIL-N+O(L=N—=)1]" 284 Te "ds ") A1 +n» (A1)

N=0

(1, J2Y-GH
L
= Y (=)"NIN+OUN=)'] 2 SLTL Yo 1) A+ xs (A2)
N=¢c
where the following notation is used:
Gl = [QL)(L+c)(L—0o)1]"?,
Sfd = 5% —2s(m? + mf) +(mf — m“})z,

P

T2 = > =2t(m% + m2)+(m? ~m2)?,

S. T, cos y. = (s+mi—md) (t+m2 —mD)—2mi(m% —mi —m2+m}),

ST, sin g, = 2m, /o .
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¢ is the usual physical boundary function. The amplitudes 4, are invariant amplitudes
defined by the M-funciion

M;u A = (pa b pa);z; ~~-uLA1 +pdn1(pa pa)u2~-~pLA2+ A +(pd pd)m ~~uLAL+ i

The calculations of the invariant amplitude coefficients in Eqs (A1) and (A2) is described
in Ref. [18].

Pomeron exchange limits the z-channel helicity flip to zero or one. This means that
the helicity amplitudes £ with ¢ >> 2 are unimprortant. We can arrange this by setting
all of the invariant amplitudes Aj, A, ... A7+, equal to zero (note that both of Eds (Al)
and (A2) are triangular). The remaining two z-channel amplitudes are

(M J2)'Gi Y = ThA ~ S TH™ " cos y.4,, (A3)
(m, J2)"GYfP = —3 S, T " sin y A,. (A4)
All of the s-channel helicity amplitudes are still nonzero,
(me DG = (Y LLA+ UL~ )] Trds (1) 4y
~{(=) (L—1)![(L+c~1)!(L—c-1)!]_”zSchI‘ R CA Y. O (AS)

and away from the forward direction (where y, = 0) all of them are important.
In the kinematic region s> m? > |t|, m2. mf, m> things are different. One easily
verifies that both Egs (A1) and (A2) reduce to

_ 1 N
(\/z/mc)Lfoc ~ ;‘,( ) Z( ) (L—l\_’;( ) Ayine (A6)

Here we have used the approximation ¢ & s |¢|. As promised, the crossing equations have
become diagonal.

Eq. (A6) proves the theorem in the text for diffractive n —» n* and K — K* transitions.
In the kinematic region (1) every unit of spin flip costs a factor /t/m,. Furthermore, if
pomeron exchange is still dominant then only the amplitudes f;, f; can be important,
and the spin-flip amplitude f; is smaller than the spin-nonflip amplitude f, by a factor
Jt/m, < 1. Helicity is conserved unless the invariant amplitudes 4,, 4, satisfy the condition

—L(s/m®4, = 0. (A7)

This is an example of the kind of dynamical constraint which can overcome the kinematic
suppression of helicity flip.

The discussion above applies to n* with unnatural parity. Diffraction dissociation
into n* with natural parity is also possible. However, for such partial waves the nonflip
amplitudes in either channel are zero if factorization holds (because of parity invariance)
and so helicity conservation is impossible. For the natural-parity waves one can show
that the same kinematic suppression of helicity flip holds, and the minimum flip of helicity
by one unit is therefore preferred.
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APPENDIX B
Nucleon dissociation

Consider the process No —» N*zn with spins 1/2+0 —» J+0; where N* is a multi-
particle system with angular momentum J and the quantum numbers of the nucleon.
Typically N* = 7N, =N, etc.... The #-chanel helicity amplitudes for Nz — N*z are
(for N* helicity ¢ > 1/2)

(me J2)" 712G T(=) (=)' 41

J-1/2

= Y NICMT VH=S)NTY VN Y GY_db.—.(x)
N=c—1/2 o=+1/2
X {8,al T(=)? A1+ v+ Q(—)Az1 0]+ (=) 7454 \/8 Azian}s (B1)

where
T(_)2 = t_(mc+ma)2’
Q(=) = —ms+mi—mg)—mys+mi—m]).
All other notations are as in Eqs (Al) and (A2). A corresponding formula can be given

for the s-channel helicity amplitudes, but it is too lengthy to present it here. The invariant
amplitudes A4, are defined by the M-function

Mllt epr-12 (Pa pa)lll "~ltJ—1/z[A1+y : QAZ]
+pdu1(pa pa)uz '“ll.t-x/z[A3 'H’ ) QA4] + ...
+(pd pd)m --'uJ-1/z[A2.I+7 : QA2.1+ l]s

where Q = p,+p, in the s-channel and Q = —p,+p, in the ¢-channel.

For pomeron exchange only the amplitudes /), 12, f$12,—1/2 and f$),,,,, are
important because #-channel helicity cannot flip by more than one unit. This means
that only the three invariant amplitudes 4,, 4, and A; are important. These contribute
to all the s-channel helicity amplitudes, so that helicity flip in the s-channel can be arbitrarily
large. Therefore, when J is large many s-channel amplitudes are nonzero in comparison
with the three in the z-channel.

In the kinematic limit s > m? > [t|, m2, m?, m? Eq. (Bl) simplifies to

(\/i/mc)l - 1/ZG‘(,{W’c( —)1/2 ~Ach

—_ J—-1/2
N (\/Itl c=e 1 =y N! s \Y
- m, (c—o)! (N—c+0)! \ m?
+1/2 N=c-1/2

o=

X {5”[—’"3/11 +2n—MSAz 4 o5] +(—)1/2—A6—o‘45 \/m Az ion} (B2)

Again we have nsed the approximation ¢ =~ s2|¢|. The crossing equations are diagonal
and so Eq. (B2) also gives the s-channel helicity amplitudes.
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From Eq. (B2) it is clear that N* helicity ¢ > 1/2 is suppressed relative to ¢ = 1/2
by the factor (\/i/mc)c_l/ 2 Barring constraints among invariant amplitudes, this means
that only the helicity amplitudes with ¢ = } can be important. Keeping only, 4, 4, 45
we find

(\/ilmc)l_ l/2(;{/2f1/2 12 ® — m A, —sA,+(s/m)A,, (B3)
_ Vit
(\/z/mc)J 1/ZG{/zfuz,— 12 & Pl sA,+(s/m;)As]. (B4)

¢

The nonflip amplitude is larger than the flip amplitude by a factor \/f/mc.

The preceding discussion applies to N* with natural parity. Diffraction dissociation
into N* with unnatural parity is also possible, of course. Only minor changes in Eqs
(B1)—(B4) are needed to convert these formulas into the corresponding ones for un-
natural parity N*, Nothing changes in the argument leading to the suppression of helicity
flip.
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