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We investigate a natural extension of the fundamental formula for black hole dynamics
found by Christodoulou and Ruffini (1971) for Kerr-Newman black holes, by generalizing
it to any value of the mass. New transformations, having irreversible character, are introduced
and studied in detail. They are shown to be intimately related to the horizons of the black
hole, since during any evolution governed by the improved equations either the area of the
event horizon or the area of the antievent horizon are kept constant. We propose a new,
more symmetrical form of the fundamental formula and we introduce two new parameters
characterizing the black holes which are naturally associated with the set of new transfor-
mations. The possible physical implications are also discussed.

1. Introduction and formulation of the problem

Studying dynamical transformations of charged, rotating black-holes, Christodoulou
and Ruffini (1971) deduced the well known relation

m* = (my+Q*/4mi)* + L*[4mj, ®

where m, Q, and L are respectively the mass, charge and angular momentum of the black
hole, and m,, its irreducible mass. They restricted the validity of (1) to the range in which
the following inequality is satisfied

L’ [ami +Q*/16m;, < 1. €)]

In this range of parameters the black hole always undergoes reversible transformations.
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In a preceding paper (1977) we investigated, for the uncharged case, a generalization
of (1) which is intimately related to a generalization of the concept of reversible transfor-
mation, too. By “isoareal transformations” we mean transformations which do not change
the areas either of the inner or of the outer horizon. Using this notion, we shall here extend
the previous result to the case of charged black holes. Furthermore, we shall suggest an
interpretation of the generalized formula (1) in terms of new parameters related to the
horizons, which in turn admit the physical meaning of “extreme energies” with respect
to suitable processes.

We recall that the Kerr~Newman solution

ds® = @®A7'dr*+0%d0” + ¢~ * sin® O(adt—(r* + a*)dg)*
— 0 2A(dt —a sin? 0dg)?, 3)

where ¢ = r?+a? cos? 6,4 = r?—2mr+a*+ Q? describes a rotating (if a # 0) and charged
(if @ # 0) black hole.

When @+ Q% <{ m?, the space-time described by (3) is endowed with an event horizon
at r = ry = m+(m—a>— Q?*and an antievent horizon at r = r_ = m—(m—a*— Q?)?*.
Bothr = r, and r = r_ are null surfaces and the two horizons coalesce when a?+ 02 = m?.

The Kerr—-Newman solution is also, likewise the Kerr solution, endowed with a sin-
gularity (at r = 0) in the equatorial plane. Consider a particle of azimuthal momentum
Dg, Test mass p and charge ¢ at radial distance r. Its energy E, as measured from
infinity, is given by the positive solution of

E*(r*+a*(r® +2mr — Q%)) = 2E((2mr — Q*)apy +eQr(r* + a%))
—(r* =2mr+ Qz)p; + 28le‘p¢ +e2Q*r* —(r* —2mr+a®+Q? ur* +X)
= ((r*—2mr+a®+Q%)p,)>%, @
where Xis the so-called “Carter’s constant of the motion™ (Carter 1973). The discriminant D

of equation (4) vanishes at 7 = ryand r = r_; hence, the energy of a particle on the horizons
is given by

E = (apy+7400)[(r +a?). ®)

Going to the infinitesimal limit of (5) (with r = ry)! Christodoulou got the following
partial differential equation:

dm(L, Q) = (LfmdL+r,QdQ) (rX +1*/m?*™", (6)

whose solution squared leads to relation (1), provided condition (2) is satisfied.

The constant of integration m;, is the mass of the unique Schwarzschild black hole
which is left when all the rotational and Coulomb energy of the Kerr-Newman black
hole is taken away by reversible transformations: no classical process exist capable of
decreasing it. my,, therefore, has been named “irreducible mass” of the black hole.

! Namely by taking E = dm, pg = dL, e = dQ.



Tt is useful to introduce exact 1-forms

ST (r+@dQ+LimdL—(r} +a*)dm) = w4, @)
where f = (m?—a?— Q2)*. Integration of (7) gives w, = dA,, where
Ay = mry—Q*2 (3

are the areas of the event and antievent horizon respectively. From (6), (7) and (8), it is
easy to see that, under the condition (2), equation (1) represents, in (m, L, Q) space, the
surfaces 4, = constant, while (1), with the limitation

L'j4mi +0*/16mf, > 1 )

represents the surface A_ = constant.

2. Isoareal transformations

In the space (m, L, Q), the physical region {, i.e. the region containing true black:
holes, is separated from the region containing naked singularities by the surface

m* = L2+ Q*m?, )

which is a conoidal surface haviug vertex at the origin of the axes.
From analogy with our previous work in the uncharged case, we rewrite (1) with m;,
replaced by an arbitrary parameter fe Rt

m? = (B%+ Q2/4B2)? + L2J4f°. (10)

For each B, in the part of the corresponding surface (10) in which m?— Q%2 is smaller
than 22, the area A, of the event horizon is constant; it is precisely given by

Ay = 16np? = 8n(m(m+(m>—a®— 02— Q?/2) 1)

and B coincides with m;,.
Conversely, if m*>— Q22 is greater than 28, the area A_ of the antievent horizon is
constant, being given by

A= 4L%B* + Q%B* = 8n(m(m —m* —a* ~ 0*)*)— 0%/2). (12)

Hence, the surfaces (10) shall be called “isoareal surfaces”. Furthermore, the trans-
formations represented by continuous curves lying in one of the isoareal surface (10)
shall be called *isoareal transformations”.

If we assign to the parameter f the values

B=p, = A, 160t if I*[Ami+Q*/16m} > 1, @13)
B=p8_=(A_J16n)* if I*/4m}+Q*16m} <1, 14

we recognize that (10) holds for every (m, L, Q) and for every fixed f. Also the identity
A = 16mfB? is always true on the surfaces (10), provided 4 is either equal to 4, or A_,



accordingly to the validity of (2) or (2'). Furthermore, the condition m?— Q32 < 28
is always satisfied. For each B, the isoareal surface (10) and the conoid (9) are tangent to

each other along the oblique curve
m? = L¥}m*+Q?, —m? = L¥Y4f*+(B+ Q?/4p)* (15)

whose points represent extreme Kerr-Newman black holes having f as irreducible mass.

2m 2m
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Fig. 1a, b. Isoareal transformations without exchange of charge (8= 1), @ 0
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Fig. 2. The particular case g = 0 (Kerr solution) (8 = 1)



The curve (15) is closed and divides the corresponding isoareal surface into two parts:
a compact one, which contains a unique Schwarzschild black hole and any isoareal
transformation with A, = constant lies on it, and an open part which, on the contrary,

" —
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Fig. 3 a, b. Isoareal transformations without exchange of angular momentum (8 = 1), L Z0
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Fig. 4. The particular case L = 0 (Reissner-Ngrdstrom solution) (8 = 1)

does not contain any Schwarzschild black hole and contains transformations with
A- = constant (see Fig. 5).

Now it shall be interesting to consider the behaviour of the aforementioned trans-
formations in the particular cases: L = constant or Q = constant. Easy computations
show that they are summarized by Figs 1,2, 3 and 4.

Let us now consider a point Py(m,, Ly, Qo) Which represents a black hole whose
horizons, by (11) and (12), have areas: Ay, = 16nB%,, A,_ = 16nf5_.

Through P, we draw the two isoareal surfaces X, and X,_ which correspond to
the constants f,, and fi,_, and denote by y,. the corresponding curves (15).

It is easily shown that the closed curves y,, and y,_ do not intersect, while X, and
X, intersect along a closed curve I'y passing through P, (see Fig. 5). The curve I'y lies
entirely in the open part of Z,_ and in the compact part of Z.,.



Hence, a generic Kerr-Newman black hole can be considered as the final stage of two
sets of isoareal transformations of the same kind: namely, either it could be obtained
from an extreme Kerr-Newman black hole by irreversible evolution keeping the area
of the antievent horizon constant, or else from a Schwarzschild black hole by reversible

2m

Fig. 5. The conoidal surface m* = L*4+ Q*m?*. Two isoareal surfaces are also indicated

evolution keeping constant the area of the event horizon?. Referring again to Fig. 5, we
notice that the existence of a whole curve I'y = 2y, n Z . reflects the existence of o0 !
Kerr-Newman black holes having fixed areas 4. and A4_.

3. Extreme energies
Let us now consider the following form of (10):
m? = B2+ Q%2+ Q%16p>+ L?/4p>. (16)
From (11) and (12) it is easy to see that the following identity holds:

BABE = [*/A+Q?/16. an

2 This corresponds, in Fig. 5, to consider P, as the evolution of S, (reversible case) or as the evolu-
tion of anyone of the black holes lying on y,. (irreversible case).



Hence, we can write (10) in the following symmetrical form:
m? = B+ B3I 5287+ Q%2, (18)

where  assumes either the value fiy if A, is conserved or f_if A_ is conserved, while (17)
leads also to

m? = B+ B2 +0%2 = A,/16n+ A_j161+Q?/2. (19)

The physical meaning of the formula above is clear: the square of the energy of a black
hole Po{my, Qo, Ly) can be expressed as the sum of three contributions:
1) its irreducible mass squared 8% (equivalently, apart numerical factors, the area of the
event horizon), which corresponds to the mass of the unique Scharzschild black hole
lying on the surface f. = constant);
2) the “extreme energy” squared B2 (equivalently, the area of the inner horizon, which
is related to angular momentum and charge). This extreme energy is the irreducible mass
of the extreme Kerr-Newman black holes lying on the curve y,_ 3;
3) the purely electric energy 0%/2.

Let us finally turn to derive an interesting equivalent form of (16). From the identity
(17), one can easily recognize that:

2Bp% = Q%16 in a Reissner-Nerdstrom geometry;
BiB% = L*4  in a Kerr geometry.

Hence, we can rewrite (16) as follows:

m* = B2+ (B2 BL e /B + (B3 B Ikercl B+ Q°12, (20)
or equivalently
m? = mi2r+Er2e+El§.N. ext+Q2/2> (21

where we have taken m,, = B,, E,. being given by L/2 and Eg y .. denoting Q*/16 m?.

The term Rgp n.. We shall call “extreme Reissner-Neordstrom energy” since it
coincides with the square of the irreducible mass of the unique extreme black hole lying
on Yo+ and having zero angular momentum.

4. Conclusions

We have thus recognized that relation (1), which is the “fundamental formula of
black holes dynamiecs™, can be extended to be valid also when condition (2) is dropped.
In this new range, the transformations governed by the generalized relation (10) are no
longer reversible, since they do not keep constant the area of the event horizon. Hence,
as we already pointed out in a previous paper, such transformations are physically obser-
vable, although they happen inside the infinite red-shift surface, since they involve radical

% When @ = 0, this “‘extreme energy” reduces to the concept already introduced in our first paper,
as “‘extreme rotational energy” of an (uncharged) Kerr black hole, and there denoted by Ee.
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changes in the configuration of the black hole itself. We can easily observe from (17) that
in any isoareal transformation with A_ = constant the area 4, must necessarily increase.

It is known (Carter 1973) that the 1-form . given by (7) has a thermodynamical
interpretation, where the area A, has the meaning of “entropy” of the black hole. It
should be interesting to find the thermodynamical meaning of the area A... This is actually
under investigation.

The results that we discussed above make clear the role of the conoidal surface (9)
as a surface of “cosmic censorship”. In fact it separates the physical region & from the
region of naked singularities; when a black hole lies on the aforementioned surface, it
cannot undergo reversible transformations with increase of mass. This physically corre-
sponds to the fact that, according to Hawking’s theorem, along a reversible transformation
thearea 4. (i.e. the entropy) has to be constant, while the area 4_has to change quadratically
with the mass. Since for an extreme black hole lying on (9) the two horizons coalesce,
a “reversible” increase of mass should correspond to an increase of A- against 4, = con-
stant, which in turn should imply the disappearance of both horizons. Hence, the cosmic
censorship is reflected in the non-reversibility of each transformation governed by the
law (10) after the black hole has reached an extreme configuration.

Editorial note. This article was proofread by the editors only, not by the authors.
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