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The gauge theory of gravitation based on a quadratic Lagrangian in the tetrad Palatini
formalism is developed. In the general case the theory contains torsion. The field equations
without torsion generalize the field equations in Yang’s theory of gravitation. It is shown
that the solutions of the exterior Schwarzschild problem and of the Friedman problem
coincide completely with solutions of these problems in the Einstein theory.

1. Introduction. The simple quadratic theory

The general gauge field theory (GGFT) has been developed in [6-12] and the gauge
(compensating) approach to the gravitational field, earlier developed in [1-3], has been
obtained on this basis. The Lagrangian in the GGFT is quadratic in the gauge field tensor,
because it contains the electromagnetic field theory as a particular case. In this paper
we consider a quadratic Lagrangian for the gravitational field, which corresponds to the
Poincaré group in the GGFT:

£y = § hRu;R™,  h = det |h3]; )

here R,,;; is the Riemann-Christoffel curvature tensor (in general containing torsiom),
hy; is a tetrad potential of the gravitational field (Lame’s matrix). According to the GGFT
one must vary Lagrangian (1) by the method generalising the Palatini method, i. e. with
respect to the tetrad potential /; and gauge field potential 47 idependently [6-11]. 47
become Ricci rotation coefficients y%/ in the gravitational case (in general they also contain
torsion). The usual Palatini variational formalism for the Lagrangian (1) (without torsion
and without the external sources) was developed in [18].
The corresponding field equations have been derived in [7] and in [20]:
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Here 1;™" is a “canonical” energy-momentum tensor and S{53” is a spin tensor of external
fields. The sct of equations (2) determines the tetrad potential 4} and the components of
the torsion tensot Q" = Q"

The condition

t(ext) — t(ext)vv — 0 (3)

is a consequence of equation (2b).

The variational principles in the tetrad gravitational theory have been developed
in [6-11] and it has been shown there that the condition (3) is a consequence of the full
Lagrangian invariance with respect to the gauge scale transformation of tetrads; similarly
the symmetry of the energy-momentum tensor tfj“) is a consequence of the invariance
with respect to the 4-rotation of tetrads.

One can obtain the true energy-momentum tensor and its superpotential for Lagran-
gian (1) by means of the methods developed in [6-11]. Using this tensor and its super-
potential one can derive the full gravitational energy and momentum inside a closed
surface:

A
Pa = - Raﬁij’ya”do‘aﬁ’ (4)
Ke
x

Integral (4) does not have the shortcomings leading to the well-known Bauer paradox,
since it contains the curvature tensor and therefore vanishes for the flat space-time. Besides,
(4) does not depend on the choice of coordinate system.

2. The general quadratic theory

Eqgs. (2) cannot be the equations of the macroscopic theory of gravitation since the
continuous medium energy-momentum tensor does not satisfy the condifion (3). Therefore
in the macroscopic theory of gravitation it is necessary to consider the linear Lagrangian

where R is the curvature scalar (in general also containing torsion).
We shall consider also two possible quadratic Lagrangians

32 = % hRabacRMcd’ 33 = % hRababRchd (63, b)
together with (5) and (1).
Thus we have the full Lagrangian

3
L = Ah+Fp+ Y L4k L) 0]
i=1

where £ is the external field Lagrangian, x = 871G/c* and 1,, 4,, A5 are new coupling
constants, which are proportional to the square of some new fundamental length /;.
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Note that there are no other quadratic Lagrangians except (1) and (6) in the theory,
since in GGFT {8, 9] there are only three quadratic combinations

gmnF abmF abn, F abmF bcnlmadl ndc’ F abmlmabF can nai,
which can be constructed from the tensor of gauge field £,,":
Rabij = }"abmlmij'

Here g, = ¢’ ¢, ¢’y are the structure constants of the gauge group and 1,7, are
the generators of the gauge group representation which transforms the indices a, b [7-9, 12].

The corresponding field equations, obtained by varying with respect to A; and v,
have the form {8, 9]

MR gy =% A2 Ryutp1~ 7 A28uraR g1 = A38u1R 3
- (Qo'qn + 2Qv[rrvgg]u) (5:5?3 + 'ileaaﬂ + ’2"2R6[a5§]
+A8908R) = — kS, ®)

R(“V) - % g“"R —4 Euv +2 1 (RllaxﬁRv‘mﬁ - 7417 guvRaqaﬁRdeB)
+ % AZ(R““RVG + RIWVQR(UQ) - ’% gudeaRda)

+l3(RR(uv)_%f gusz) = __thlevxt)' (9)
If the torsion tensor vanishes, the relations
(A1 +2,4+343)R, =0, R+44 = xt*® (10a, b)

are consequences of Eqs (8), (9). As (10a) must be an identity for any numerical value
of the scalar curvature R, one has

Ay+A,+34;, =0 (10c)
and therefore there are only two new coupling constants in the theory.

For A; = A, = 43 = 0. Egs (8), (9) become the Einstein-Cartan field equations [3-5].
When i, = —34, = 7, and the torsion tensor Q,* = 0, Eq. (8) is fulfilled because of
Bianchi identities; in (9) all quadratic extra terms vanish because of the Bach-Lanczos
identity [16, 17] for quadratic Langrangians

S [ (d*3x)I(R,pusR7*” ~ 4R ,,R°*+ R?) = 0. (1)

Therefore in this case one gets the usual Einstein theory.

If the coupling constants A; are not equal to each other, but the external fields are
spinless and the torsion tensor Q,,” = 0, one can find out that there is only one coupling
constant A = 2(i, — 4;) in the theory because of the Bach-Lanczos identity and the identity
(10c). In this case the field equations (8), (9) become [8, 9, 13, 14]

vataﬂ;v+%‘ Sulop1 = 0, (12a)
Ruv - % guvR ~4 guv + /:(Rua‘zﬂRvﬂa” - % guvRuqaﬂRo’Qaﬁ
~3 RRy, + ' 8wR?) = — w10 (12b)
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The set of equations (12) is overdetermined, but it can easily be verified with the help of
the Bach-Lanczos identity that in vacuum any solution of the Einstein equations
R, + A1g,, =0 is the solution of Eqs (12a, b).

With the help of the Bianchi identities Eqs (12a) become

Riepy = 4 0fR 5y (13)
This set of equations has an algebraic consequence

R, 4R, +R,",.Rs,+R, 4R, = 0. (14)

3. The exterior Schwarzschild problem

Now let us suppose that gravitational field is spherically symmetric, described by
a line element of the form

d52 — ea(r,t)dr2+r2(d02+sin2 9d¢2)_e)'(r;f)("tz,
4

x'=rx*=0,x*=¢,x*=1t (c=1). (15)

With the help of the nonvanishing components of Eqs (12b) let us construct the expressions
Iy 1f/1 4 1[/1 4

of the form , = - , = + :
4/ 21\1 4 21\ 4

i A
— gl [1 SV " (al—yl)e_“] =0, (16a)
r Ia

l - - )" ~a
7(a1 +7,)e {H—%/.A— —r—(ozl—y,)e ] = 0, (16b)

1 1
(1+%24) {:—-/1-%- r—i(l—e‘_a)-}- 2 (o _71)3—(’]

+2 [er”(“*”— %(L—e‘“)"] =0, (16¢)
and also consider the trace of (12b):
L(R+44) = 24+ We™ @*D _ ;12—(1—51)— %(alwyl)e'“ = Q. (16d)
Here
da da oy oy % %y

41=‘5‘r‘, %=—é;, 7’;=a*r, 74=§, 0‘44=W> ‘)’11=W,

W = Rygq = €(—F taa—F 03+ 5 4y +€(F y11 +5 Y1 — 5 71%)- (16¢)
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In the case
A —a "
;(dl—h)e # 1+514 17

Eqs (16a, b) yield

Jdu

bij
— =0, —(@+N =0, a+y=f()=0, (18)
ot or

i. e. the Birkhoff theorem is true, and therefore Eq. (16d) leads to the usual Schwarzschild
metric (with the cosmological term). If the condition (17) does not hold, one can prove
that the set of equations (16) has no solutions at all.

Thus the set of solutions of the field equations (12) in the spherically symmetric case
in vacuum coincides with the set of solutions of Einstein equations [8, 9, 14]. Some other
cases of interest were considered in [15], where the solutions of the field equations (12)
(without the cosmological term) wete analysed.

4. The Friedman problem

Consider now the field equations (12) for the .isotropic homogeneous spinless perfect
fluid. Let a line clement have the Robertson-Walker form

ds® = &"(dr® +r?d0? +r? sin® 0dg?)— ' Vde?, (19a)
alrt) __ az(t)
e = *—*“Iz*‘—i N
1+ —r?
(+47)

The coordinates are supposed to be comoving with the fluid, so that the energy-momentum
tensor of the spinless perfect fluid has only diagonal components

yir,) =0 (c=1). (19b)

ti=ti=1=p, = —= 20)
Denoting
Hj = RypugR* — 5 6IR (g R™ (21
we have from Eq. (12b)
Ri+M(H;~1RR}) =0, (22a)
RI—-LR—-A+AMH}-LRRI+# R?) = —xp, (22b)
R:—1R—-A+A(HZ—1RR:+4 R = —xp, (22¢)

Ri—% R—A+M(H{—% RR{+75 R?) = xe. (22d)



Instead of Eqs (22) let us consider an equivalent set of equations obtained from the com-

st toeon () () (9 ()- ) () 0+ 0)+ ()

R} (1— gR) +AH; = 0, (23a)

(RI-RY) (1— g“R) +A(Hi—H?) =0, (23b)
(RI=RH|{1- &R +AMH!-H}) = —x(e+ 23

1 4 3 1 4) = D), (230)

R+44 = —x(s—3p). (23d)

Using the explicit form of the metric tensor (19b), one can find that all quadratic terms
in Eqs (23) vanish because of identities

H} = 1 RR}, (24a)
H{—H} = R(R]—R3), (24b)
H{—H{ = $R(R{—RY), (24¢)

which take place for the metric tensor (19b).
Eqgs (13) for the general form of the line element (19a) reduce to

(Rs+%5R), =0, (252)

2
(R3+% R),l_'lf(a1+ 7) (Rt-R}) =0, (25b)
(Ri+§R)s+Fa(RI—R}) =0, (25¢)
(RI—R3)4+3ay(Ri—R3) = 0. (25d)

Here we put R} = 0 in a consequence of (22a) and (24a). It can easily be verified that
all Egs (25) are satisfied by the metric tensor (19b).

Thus we have demonstrated that the only solutions of the field equations (12} with
a homogeneous isotropic spinless-perfect-fluid material distribution are the solutions of
the Einstein equations (for any p = f{(g)).

5. Conclusions

It was shown that in the general quadratic theory the field equations for the Schwarz-
schild problem and for the Friedman problem have the same solutions as the Einstein
equations. At the same time, one can show that the Nordstrém metric does not satisfy
the set of equations (12).
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In the general quadratic theory the condition (10c) -is very important. Only in
case (10c) the external spinless scalar field does not generate torsion and therefore

torsion cannot be generated by gravitational field itself without the external field with
nonzero spin.

Let us note that Eqs (12a) in vacuum coincide with the field equations in the theory
of gravitation proposed by Yang [19]. There is a difference, however, between Yang’s
theory and ours: in our theory Egs (12b) have to hold simultaneously with Yang’s Eqs (12a).

The author is very grateful to Professor A. Trautman for a stimulating discussion.
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