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In this paper the interior field of a static spherically symmetric charged fluid distribution
in Einstein-Cartan theory has been studied. Assuming that the spins of the individual par-
ticles composing the fluid are all aligned in the radial direction, we have obtained a solution
and the physical constants appearing in the solution have been evaluated by matching the
solution to the Reissner-Nordstrom metric at the boundary. Unlike general relativity, p is
discontinuous at the boundary of the fluid sphere.

1. Introduction

Recently Prasanna {1] considered the problem of static fluid spheres in the framework
of Einstein-Cartan theory (E-C theory). Adopting Hehl’s approach [2, 3] to E-C theory,
Prasanna has obtained the solutions analogous to solutions obtained by Tolman [4] in ge-
neral relativity. He has found that a space-time metric similar to the Schwarzschild interior
solution will no longer represent a homogeneous fluid sphere in the presence of spin density.
Nduka [5] has discussed the charged static fluid spheres in E-C theory and has found
that the pressure is discontinuous at the boundary of the fluid sphere.

In the present paper we have solved the Einstein-Cartan equations for a charged
fluid sphere by a different method. We have derived a general set of differential equations
which the function v{r) and A(r) of the metric coefficients must satisfy and have obtained
the solution by adopting a technique similar to that of Adler [6] for an uncharged fluid
sphere in general relativity. The relevent differential equation reduces to Euler’s equation
which may be treated as a generalisation of the equation of Wyman [7].
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2. The field equations and their solution

The Einstein-Cartan-Maxwell equations for the perfect fluid {8, 9] are

Ruv—% Rguv = _snTuva (21)
[(—2)'2F"], = 4n(—g)'*J", (2.2)
Frpn1 =0, 2.3)

where 7, is the energy momentum tensor, F,, is the electromagnetic field tensor and J*
is the current four vector. Throughout this paper we set ¢ and gravitational constant equal
to unity.

For a static spherically symmetric system we take the metric as

ds? = e'di* —e*dr® —r*(d6® +sin’® 0dd?), 2.9

where A and v are functions of r only.
For the system under study the energy momentum tensor T splits into two parts
viz. 1, and E, for matter and charges respectively [10] as

T, = t,+E,. (2.5)
The nonvanishing components to 7, are
h=¢ Hh=8=13=-p

Because of the spherical symmetry the only non-vanishing component of F#” is Fi4 = —F4!,
Therefore the nonzero components of £, are

1
EZ = E| = —E% = “Eg = = g;gug“(F‘“)z.

Equation (2.3) is obviously satisfied by this choice of F** whereas (2.2) reduces to

-~N
g 2 Q0T "»_12“31 , (2.6)
r

where Q(r) is the charge up to radius r,

Q(r) = 4n § J*r2e"dr. 2.7
1]
From equation (2.7) we see that outside the fluid sphere Q(r) is a constant Qo. That Q,
is the total charge follows from (2.6) which gives the asymptotic form of the electric field
as Qp/r2.
Then from (2.1) and (2.5) the field equations may be written as

Y | 1
873+ 8nE; = ¢ * (7 - F) + 3 (2.8)
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~ " ey 1 1
8np—8nE; = ¢ — + =5} =3, 2.9
F r
8np—8nE: = e™* v + iz - /ﬂ + ok
pontz = 24T 4T 2 )

(2.10)

where following Hehl [2,3] we have defined p = p—2rK? and § = ¢—2rK? with
K = A,e "%, Here A, is a constant of integration and dashes denote differentiation with
respect to r.
Now we put
v=2logY. (2.11)

Then from equations (2.9) and (2.10) we get the second order differential equation in Y{r)
after eliminating p as follows:

Lo (L., [ ¥ 1 20%
Viel—+ )Y+ 7- - — s )V =0 (2.12)

r r

This is a generalisation of Wyman’s equation [7].
Now we make the assumption
Q = Ar', (2.13)

where A4 is constant of proportionality and 5 is a positive integer. Use of equation (2.13)
in (2.12) yields

A SO A |
Y’ — (7 + 7) Y+ (% -0 T3 —2,42;-2""4&) Y =0. (2.14)
Now we define

e * = 1(r). (2.15)

Then equation (2.14) may be written as a linear first order equation in 7(r) viz.

, 2AY+rY —r*Y") —2Y(1—24%*1"%)
' —1 ; = : (2.16)
(Y +rY’) nY+rY")
This has the solution
(r) = exp [~ F(r)] {f exp [F(r)]g(r)dr+C}, (2.17)
where
_ —2AY+rY' —r*Y")
B (Y +rY)
_=2Y(1-24%7"%)
&= r(Y+rY’)

F(r) = ~ff(r)dr

and C is a constant of integration to be fixed by the boundary conditions.
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It is clear from the above equations that it is the p and not p which is continuous
across the boundary r = r, of the fluid sphere. The continuity of p across the boundary
ensures that of dg,,/dr i. e. v'e". Further, with p and g replacing p and o respectively we
are assured that the metric coefficients are also continuous across the boundary. Hence

we shall apply the usual boundary conditions to the solutions of equations (2.8), (2.9)
and (2.10).

The exterior metric is taken as the usual Reissner-Nordstrom line-element given by

ds? (1————+&)dt2— (1—ﬂ+—Q—°>dr2
r r r

— r(d0? +sin® 0d9?), (2.18)
where Q, = Q(ro) and M is the total mass of the sphere given by

M = 4xn | oridr. (2.19)
0

3. Specific analytic solution

Equation (2.14) may be solved by quadrature in a number of ways. We note that A
may be obtained if v is given and vice versa. Once v and A are obtained, ¢ and p follow
directly from equations (2.8) and (2.9). Nduka [5] has assumed that exp (—4) = constant
and has obtained v. We adopt Adler’s technique [6] and choose v in such a way that f = g.
This is fulfilled by requiring that

Y —rY =24%*"7%Y = 0. 3.1)
We consider the case when #» = 1 which reduces the equation (3.1) to
r?Y" —rY'—24%Y = 0. (3.2
On putting p = —1 and ¢ = —242% (3.2) is transformed into
Y’ +prY' +qY = 0, (3.3)

where p and g are constants. Equation (3.2) is Eulers’ homogeneous equation. The solution
of equation (3.2) may now be written down and the metric function v(r) is obtained. Then
equation (2.17) gives the other metric coefficient A() while density and pressure can be
calculated from equations (2.8) and (2.9).

To solve equation (3.2) or (3.3) there are three possible cases [11] viz.
(i) 24241 >0, (i) 24*+1 =0, (iii) 24>+1 < 0.

But 42 < 0 leads to imaginary electromagnetic field and so in what follows we shall take
A% > 0. Thus the solution of equation (3.2) is

Y = Birtt1 4 Crt 7, 3.4
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where B, and C,; are constants to be fixed by the boundary conditions and
n = v1+242. (3.5)

When equation (3.4) is used in conjunction with equation (2.17), 7(r) can be readily ob-
tained as

w(r) = Q=) 14D, 2@ B (24 )"+ C (2 —n)] 7 2ETET), (3.6)

where D, is constant of integration to be fixed by boundary conditions.
Now Yand 7 are known i. e. vand Z are known. The electromagnetic energy is given by

8nr’El = 8nr?Ed = —8mr’EY = —8nr’E3 = A% 3.7

By equation (2.8) and (2.9) pressure and density can be obtained in a straighforward
manner

8rr2o(r) = 1~1(r)—2{Q2~n")e(r)—1} (B;r*+C,)
{ByQ+mr"+C,(2—n)} ' —A4*

+27AXB T Crt Ty, (3.8)
8rr’p(r) = 1(r) {By(3+2mr*"+ C,(3-21)} (B,r*+Cy) ™!
— 1+ A* 424} B T C P T (3.9)

Using the boundary conditions discussed in Section 2, the constants A,, B, C, and D,
are given by

1 1 e -
A = 2—7:(00— 4:_;'._2) {Br§™"+Cyrg N4}, (3.10)
0
where o, is the value of density at the boundary r = r, and
2M 3
¢ =1-"— Q;’ ,
Fo Yo
1 Qg ~(1+n)
B, =5 1=26—n6— — |rg "™, (3.11)
]
1 2\ :
Ul To
Dy = (§—Q—r) g ETIC
B1Q2+mrg’+Cy(2—mPE e, (3.13
1

The conditions p > 0 and ¢ > 0 will impose further restrictions on our solution.

By putting 4 = 0 in equations (3.4)-(3.13) we obtain the solution corresponding
to the uncharged case of static fluid sphere in E-C theory. This uncharged case has been
discussed recently by the present authors elsewhere [12] and hence it represents a new set
of exact solution of the static fluid spheres in Einstein-Cartan theory.
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