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STATIC FLUID SPHERES IN EINSTEIN-CARTAN THEORY
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Institute of Technology, Banaras Hindu University, Varanasi*
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Analytic solutions of the Einstein-Cartan field equations for the interior of a fluid sphere
are obtained. Some of these solutions may be applicable to the investigation of stellar inte-
riors where high central density and pressure are significant (i. e. massive bodies like non-
-rotating neutron stars).

1. Introduction

Stimulated by the successful geometrization of physics in Einstein’s general theory
of relativity, the great French mathematician E. Cartan suggested that a more general
geometrical framework incorporating the notion of torsion as well as Riemannian curva-
ture might be useful in the description of a continuum of spinning particles (Cartan {1, 2)).
Nearly after half a century this idea has received a strong theoretical ground (both geomet-
rical and physical) through the investigation of various authors (Trautman [3], Kerlick
[4], Kuchowicz [5], [6]; Hehl [7, 8]; Hehl et al. [9] and Prasanna [10]) in the form of
a viable rival theory to Einstein’s theory of gravitation and which is now called the
Einstein-Cartan theory (or E-C theory in brief).

Since the predictions of the E-C theory differ from those of general relativity only for
matter-filled regions, therefore, besides cosmology, an important application field for
the E-C theory is relativistic astrophysics dealing with the interiors of stellar objects like
neutron stars with some alignment of spins of the constituent particles and under con-
ditions when torsion may produce some observable effects. As such it seems desirable to
understand the full implications of the E-C theory for finite distributions like fluid spheres
with non-zero pressure. With this view many workers have considered the problem of
static fluid spheres in the E-C theory (Prasanna [11]; Kerlick [4); Kuchowicz [12, 13];
Skinner and Webb [14]). In this paper we have investigated the same problem and have
developed a technique to obtain the solution in an analytic form by the method of quadrat-
ures. The application of the technique in special cases gives some exact solutions in a quite
easy manner. Some other solutions have also been obtained under different assumptions.
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2. The field equations
The Einstein-Cartan field equations are
R{—3R&l = —yt, (2.1)
Q;k—éi'Q;k—éli(Q;l = _ij‘k, (2.2)

where Q?j is torsion tensor, ¢/ is the canonical, asymmetric energy-momentum tensor, S!‘j
is the spin tensor and y = 8n.
For a static spherically symmetric system an appropriate metric is

ds? = e'dt® —e*dr® —r*(d0* +sin? 0dP?), (2.3)

4 and v being functions of r. We use comoving coordinates with 4-velocity #' = d. The
orthonormal coframe is chosen as

9 =eMdr, 9% =rdf, 9° =rsin@dd, . 3* = "%d:.
When we assume a classical description of spin, we have
St =S,u*  with S, =0, 2.4)

where S;; is the antisymmetric tensor of the density of spin. In the case of spherical
symmetry, the tensor S;; has the only nonvanishing independent component S,; = K
(say) and the non-zero components of S}, are

S33 = —S%, =K. (2.5)
Hence from the E-C field equations (2.2), the nonzero components of Q}, are
033 = —03, = — K. (2.6)

Thus for a perfect fluid distribution with isotropic pressure p and matter density ¢ (Prasanna
[11]) the field equations (2.1) finally reduce to

1 1 v

8np = 167°K*— — +e™* (—2 + m), (2.7
r r r
1 (1 ¥

8mo = 16n°K>+ — —e *(—2 - —>. (2.8)
r T r

e). 1 12 V” V')., VI+A"I

(2.9)

where dashes denote differentiation with respect to r.
The conservation laws give us the relation

[P +3(e+pV]+2K(K' +% Kv) = 0. (2.10)
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If we use the equation of hydrostatic equilibrium viz.

p'+3(e+pyv =0, (2.11)
we get
K'+1Kv =0. (2.12)
From (2.12) we have
K = A4,e7"?, (2.13)

where 4, is a constant of integration.

In principle we have a completely determined system if an equation of state is specified.
However, as is well known, in practice this set of equations is formidable to solve using
a preassigned equation of state. Therefore other methods are applied under different
mathematical assumptions.

Following Hehl {7, 8}, if we define

0= g—-2nK2, p = p—2nK? (2.19)

we find that the equations (2.7) and (2.8) take the usual general relativistic form for a static
fluid sphere as given by

_ 1 a! v
8ap = — 5 +te |5+ —), (2.15)

r r r

R 1 —a 1T X
8ng = - +e ——5+ =}, (2.16)

r r r

(2.9) remaining the same. The equation of continuity (2.10) now becomes

d
L +i@+py =0 217)

It is clear from these equations that it is the p not the p which is continuous across
the boundary r = r, of the fluid sphere. The continuity of p across the boundary ensures
that of v’ exp (v). Futher, with p and g replacing p and p respectively we are assured that
the metric coefficients are continuous across the boundary. Hence we shall apply the
usual boundary conditions to the solutions of equations (2.9), (2.15) and (2.16).

We use the boundary conditions

2m

[ = 1T = (1 22), 218)

To

p=0 at r=rg
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where r, is the radius of the fluid sphere and m is the mass of the fluid sphere. The total
mass, as measured by an external observer, inside the fluid sphere of radius r, is given by

m = 4n | gridr
0

ro ro
= 4n { or’dr—8n* | K*(r)ridr. (2.19)
0 v}
Thus the total mass of the fluid sphere is modified by the correction

ro
8n? | K*(r)rdr.
0

3. The solution of the Einstein-Cartan field equations by quadrature

It is well known that the equation (2.9) may be solved by quadratures in a number of
ways; €. g. Tolman [16] and Prasanna [11] specify various conditions on the functions v
and A that simplify the equations and allow immediate integration. Once v and A are
obtained p and g follow directly from (2.15) and (2.16). We define

Y(r) = e/% 1(r)=e* 3.1
Then (2.9) may be written as
2AY+rY' —-r2Y” -2Y
g [RIAIY Y _. (3.2)
Y +rY') (Y +rY')
It has the solution
©(r) = exp [— F(N] {] exp [F(w)]gw)du +c},
where
r _2(Y+ryt_r2yu)
F = d N = 3
(r) = Jfwdu, f(r) ¥ 7))
-2Y
= 3.3
0 = v 3.3
¢ being a constant of integration to be fixed by the boundary conditions.
The remaining equations (2.15) and (2.16) give p and g as
rY’
8nprl = —l+1{1+4+ — 34
npr 't( + ZY) (3.4)

and

8ngr? = 1—1(1+ rf-). (3.5)
T
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Exact solutions in terms of known functions are most easily obtained by requiring
one of the field variables-to satisfy some subsidiary condition which simplifies the full
set of equations. Once the field equations are solved in this manner an equation of state can
then be found. Such solutions may be useful in understanding a system in the extreme
relativistic limit where we cannot specify a priori what the equation of state might be.

Further, there is no reason to expect that all solutions will be physically reasonable.
Only a subclass of these solutions corresponding to certain choices of the function v(r)
will be physically reasonable and a still smaller subclass will correspond to physically
reasonable equations of state. Thus a judicious choice of v(r) is necessary for a physically
interesting solution.

4. Specific analytic solutions

We note that the equation (3.2) is linear in 7 if Y is a known function. This being the
case, we choose Y in such a manner that equation (3.2) can be immediately integrated.
We assume that Y satisfies the Cauchy equation

Y —rY'+(1-d)Y =0, 0<a<l. 4.1)
This equation gives

Y(r) = ar'+ b, 4.2)

where i = 14+a, j = 1 —a; a and b being constants of integration. When Y from (4.2)
is used in (3.3), 7 is

1(r) = s~  +cr®[akr** + b1}, 4.3)

where

s=2-0a% k=24a, I=2-a

Since Y and t are known, they may be used to calculate p and g from equations
(3.4) and (3.5) and the spin density K may also be calculated from (2.13). The pressure is
given by

22 T(r) 20 2a -1 1
8np = 16n°K*+ — [anr**+bq] [ar**+b]" "'~ 5 4.4)
r r
and the density by

2
8no = 16n°K*— pe Rt S ;i(s-c(r)——])(arz"+b) (akr®+bD)71, 4.5)

where n = 3+2¢, ¢ = 3-2«¢. The spin density K is given by

K=A,e7"? = 4,Y ! = Ay(ar'+br)" 1. (4.6)
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The constants of integration a, , ¢ can now be determined by matching the solutions
at the boundary r = r, to Schwarzschild exterior solution. They are given by

a = (1—qY¥}) (darb¥)™ !, (4.7)
b= —(1—nY}) @arbY)™?, (4.8)
c= (Yf— é) [+ Y2 2Yrd)] (4.9)

with Y2 = 1—2m/r,. Also A, is determined from

, , 1 2
8no(ro) = 16n°Ai(arg+br)) 2 — = — 5 (st(ro)—1)
Fy ry
x (ard*+ b) (akrd*+bl)~ 1, (4.10)
where

©(ro) = s~ '+ o akrd+bI] k.

Note that now 0 < « << 1. The solution with & = 0 cannot be matched to the Schwarz-
schild solution with a finite boundary.

For the paiticular values of the parameter « and intergation constants a, b, ¢ several
previously known solutions for static fluid spheres are contained herein.

The limiting value of « = 1 gives a solution similar to the one given by Adler [15].
This is the only solution of the family which does not diverge at the origin. Three solutions
obtained by Prasanna [11] are also included in this family. These are the solutions cor-
responding to Tolman’s I, V and VI solution [16].

As the solution for the case « = 1 js significant for further investigation, we mention
it explicitly,. When « = 1, Y satisfies the differential equation

Y —ryY =0. (4.11)
Therefore
e'’? = Y(r) = A+Br. (4.12)
This gives
2

e t=1r) =1+ (4.13)

cr
(A+3Br3)*3’
where the constants 4, B, C ate specified by matching the solution to the exterior Schwarz-
schield solution at the boundary r = r,. They are given by

A=(01-2)""(1-%¢), (4.14)
B = (1—2e)"'*(g/2r}), (4.15)
C=- 22(1—28)—”3(1—8)2/3. (4.16)

To
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The spin density K is given by

-1
K = A(A+Br)™' = 4,(1-2e)'? (1—% e+ —;—yz) . 4.17)

Also we have

.
o= (1= PU =% e+ 3 ey?) 2P[3—2ep*(1 =3 e+ 3 037 ']
47tr0/

-2
+ 1672431 —2¢) (1~§e+ % y2) (4.18)

and

& s - -
p=(4—7‘z;3) [e*(1—Fe+7er’) ' =(1=Fe+3 ey’ (1-8)*]
[}]

+167°A3(1—2e) (1 -5 e+L ey 73, (4.19)

where ¢ = m/fr, and y = r/ry. The constant 4, is given by

4= (2 f—(3—?i8 ~ o(ro) (4.20)
v 167r2> dnri\ 1—e¢ olro) |- '

When A4, = 0, the solutions of this section reduce to the interior solution in general rela-
tivity obtained independently by Adler [15] and Kuchowicz [17] (when & = 1) and to that
of Whitman [18] when, o # 1.

5. Another application of the technigue
Let us chose
Y(r) = e = (kP + k)2, (5.1)
where k; and k, are constant. Then the differential equation (3.2), on intergation, gives

G ki k) (142k5r%)

w(r) = e * 52

) (kyr*+ky) (52)

ie ¢ = (kyr?+k,)/(Gkir? +ky) (14 2k4r?), where k; is a constant of integration. Also
K = A3 kor*+ky) V2 (5.3)

The constants k(, k, and k; are determined by the boundary conditions at r = ry. The
pressure and density are given by

k
p = 2nK*+ *i( , 5.4

14+2kyr? ks
16x

ky+kg?) " 4n

o = 2nK2+ i =3k et + (5 k3 =Tk kok)r* + (3 k1k2—6k§k3)'

55
87 (kr*+ky)* (5:3)
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The constants k;, k, and k; are determined by

2m (3 kyrd+kg) (1+2k;r0)

- — , (5.6)
Fo (kyrg+ky)
2m 2
1"" —_— =7 k1r0+k2, (5-7)
To
k, (1+2Kk%rk
ky=— — glz.___g‘"). (5.8
4 (k;rg+k,)
From (5.6)-(5.8) we have
2 3
ky = —dky = 5, ky=1-—". (5.9)
Yo o

Here k; > 0 and k; < 0. Also A4, is determined from

A% = {8nk290 “(% ky— 6k2k3)}/167f2,

Im 3m Im 2
={8ngp |1 — — |~ —=|2— — 16n°, (5.10)
To Fo Ty
where po = o(r = 0).

When 4, = 0. e. spin is absent, the solutions go over (with some adjustment of the
arbitrary constants) to the interior solution obtained by Krori et al. [19] and Tolman’s
solution IV [16].

6. Some additional solutions

Case 1. Let us make the assumption

v = Bre?, 6.1)
where f is a constant. Then from the field equations (2.15)-(2.17), we obtain
2r4
et =1-drl- —, (6.2)
4
1 2r242d \)
e = —exp {sin'1 (————B il )} , (6.3)
n 2N d
2_4.1/2 2.2
8np = 16n°K* 4B 1~dr’— ’?_r_) _Br —d,
4 4
2.2
+2d
K = A exp {—-sin“’ (__,__5 r_.__», (6.5)
2V +d?

8np = 16n°K*+3d+$ B*r?, (6.6)
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where the constants B, d, n and A, are given by

ﬁZ
m=- (d+ - ro), (6.7)
_ 1o pri+2d
m—a—l:l—’;sm (2\//3 +d2)]’ (8
r2 = 4[V4d*+5p* ~3d]/58, (6.9)
2.2
Al = %;-02-) exp {2 sin™! (Zﬁ—\/%%_z—%)} . (6.10)

From (6.9), r2 > 0 only when B > d. From (6.7) and (6.8)

_exp [sin™* {(B*re+2d)/2 \/ﬁz+d2}]

2
(1—-dr§— l—i: r‘g)

Thus the value of # is fixed by the values of §, d and r, determined (6.7)-(6.9).
When A, = 0 the solutions go over to the interior solution in general relativity
due to Krori et al. [20].

Case 2. Let us assume
- r?
e=0\|l-=), (6.11)
To

where g, is the value of g at the centre r = 0. Then from the field equations (2.15)-(2.17)
we have

S 87‘50( 2_ ﬁ)
= 1- T2 (5= 5 ), (6.12)
¢ = [A4, cos ({/2)+As sin ¢/2)T% (6.13)
8rp = 167°K> + (2“9") [1— 8f—"(Sx 3x )]
ro\ 5

Ay~ A4, tan ({/2) 8moo
8 [A2+A3 tan (c/z)] ~ s O (6.14)
K = A4,[A4; cos ({{2)+ 4, sin (/2] 71, (6.15)

— rz
e = 2nK*+go (1— %), (6.16)



846

where 4, and A; are constants to be fixed by the boundary conditions and

xr2C10x5+25+5) 6.17
= 5, = : - X —3 X —y— . .
E BT i (¢17
The use of boundary conditions gives
167r2p,\!'? 2ry (2
Ay = (1= 2] eosG )-S50 )sin k), (6.18)
15 5
167r300\""? 2ro (270 )
45 = (1— 5 ) sin (3 {1)— 3‘0(_30) cos (3 1), (6.19)
A7 = Q( O) [4; cos (3:(1)+ 45 sin (3.£)], (6.20)

where

5 .
. °g[6+ <8nréeo )]

Therefore (6.13) and (6.15) go to the form

16720 - Mmoo . (L—O\T
e = [ (1= 16} o (18 s, ”9°sin(gl )\ (6.13a)
15 2 5 2
16nr3o — 2o, AN
K = 4, [(1— Ll';’é’ﬁ) cos (Clz C) —2p "59° sin (&_2_6)] . (6.153)

To get a real solution we must have

15 m
re< —— or —<i, (6.21)
16mp, ro
where
8nry _
m =
15

When we put A, = 0 this solution reduces to that of Mehra [21] in general relativity.

7. Discussions and .conclusions

In general the dependence of the spin on the radial distance r is not determined in the
absence of a magnetic field. This dependence can therefore be chosen arbitrarily. Prasanna
[11] introduced an assumption (Eq. (2.11)) to determine the radial dependence of spin.
In the present work also we have used the same assumption. Thus one may obtain for
various choices of K(r), an arbitrary number of solutions corresponding to each of the
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solutions of Tolman [16], Adler [15], Kuchowicz [I7] and other solutions dealt with
in this paper.

The family of solutions obtained in Section 4 of this paper, some of them though
singular at the origin, may be useful in the investigation of massive stars. They allow to
vary the equation of state in a continuous manner by changing the value of the param-
eter o, It is interesting to note that this is one of the rare families of interior solutions for
relativistic fluid spheres in which none of the field variables is considered constant. Therefore
in contrast with the other cases, these solutions may be of a better use as a model of non-
-rotating neutron stars.

If we consider the possible observable effects of the E~C theory for compact objects,
a recent calculation by Kerlick [22] for the suiface deformation in neutron stars seems
to indicate that the torsion effect is extremely small in comparison with other types of
deformations. The torsion effect becomes significant only when spin density begins to
dominate mass density at the critical density

on = 1.2x10°* gem™  for neutrons.

This is greater by far than any conceivable stellar density. The only possible occurrence
of densities of the order of gy is in the early stages of the universe at the first split second
of creation.
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