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The quark fragmentation model is extended to describe meson and baryon production
from quark as well as diquark jets. The model is applied to e*e™ inclusive annihilation and the
current and target fragmentation region of deep inelastic scattering. An independert test of the
model in lepton pair triggered meson nucleon reactions is proposed. The hadron distributions

are predicted to depend on x = VM 2/s and xF only via xg/(1—x).

1. Introduction

Inclusive hadron production in e*e~ annihilation and the current fragmentation region
of deep inelastic scattering is usually studied in terms of so-called quark fragmentation
functions D(z). They are also used in parton-model descriptions of large p, production.
The introduction of those fragmentation functions rests on factorization of hadron distri-
butions from different jets with large relative angles. Kinematic arguments and model
studies, e.g. in the Schwinger model [1], support that factorization.

Possible violations of scaling, i.e. a dependence of the fragmentation function D(z, Q%)
on an intrinsic momentum transfer Q2, are neglected in this paper. On the bas isof general-
ized renormalization group equations [2] for the moments of D(z, 0?) logarithmic scaling
violations are expected for an asymptotically free theory, but they are not related in a simple
way to those of vI,. From the experimental side there is no obvious indication for viola-
tion of scaling for the quark fragmentation function.

Since there is at present no reliable method of calculating quark fragmentation func-
tions from an underlying theory, say QCD, a simple phenomenological model has been
developed [3-8]. In its simplest version D(z) is given as solution of the chain-decay equa-
tion [12, 13]

1-z
!

D(z) = d(z)+ Jldz d(z’)D( z ) (L.1)

-z 1-z2
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which reflects a planar multiperipheral structure. z is the hadron momentum scaled by the
momentum of the quark-like jet. The vertex function d(z), describing the momentum shar-
ing in eagh emission step, is to be specified by hand. Hence, the model is predictive only
at the level of correlations or, to some extend, particle ratios. Therefore, we consider
it more as a convenient parametrization.

So far, this model has been used to describe the hadronization of ““isolated’ quarks,
e.g. quarks kicked out of a hadron by some large momentum transfer process. In such
reactions there is also a through-going jet containing the remaining valence quarks (plus
gluons and sea quarks). The study of those jets is one of the main purposes of this paper.

A thinkable prescription would be to use some quark distribution functions in the jet
(possibly those measured in deep inelastic scattering) and fold quark fragmentation func-
tions in. This has been tried [9], and failed. The resulting hadron spectra are much too
steep.

Other approaches [9-11] (so-called recombination models) are more successful phenom-
enologically. Inclusive production is described as resulting from recombination of one
or two valence quarks with soft sea quarks. The hadron momentum is taken as the sum of
the contributing quark momenta. These analyses revealed that enhanced sea distributions
(compared to usual fits to deep inelastic structure functions) are needed to match normali-
zation, while the shape (say of F,_, . ~ u(x)) is nearly automatically in accord with observa-
tions. However, this method cannot easily be applied to ete~ annihilation or the fragmenta-
tion of other ““isolated” quarks. This situation is somewhat unsatisfactory since one would
expect one common mechanism for the transformation of quarks and gluons into hadrons,
independently of how the quark-gluon state is produced (at least for large Q? processes
a separation into a hard scattering process and a slow hadronization process seems visible).

This unfortunate situation has been a main motivation for the present analysis. In
order to obtain a common description of all the mentioned phenomena we start from the
above model (Eq. (1.1)) of quark fragmentation and ask for an extension to other types
of jets. As simplest generalization we consider the target fragmentation region of deep
inelastic scattering. For not too small values of the Bjorken scaling variable xg; scattering
is off a valence quark. Hence the through-going jet has flavour-diquark and color-anti-
triplet quantum numbers. For given xg; the total jet momentum is also completely speci-
fied. The main point is that we are dealing with the hadronization of this whole jet but
not of individual quarks in the jet. This is also supported by the Kinoshita-Lee-Nauenberg
argument that for massless theories (which we essentially consider) only those questions
are sensible involving the sum over all degenerate quark-gluon states, i.e. the jet.

Introducing fragmentation functions for those diquark (color-antitriplet) jets leads
simply to target fragmentation functions in leptoproduction

_ 2Pin

= |xFquq(le|)s Xp = w (1.2

X

|xE] oy
Another test not sensitive to details of the model (e.g. to the choice of the input momentum
sharing function), but critical for its general structure, is the relation between deep inelastic
lepton scattering and lepton pair production processes in np collisions. The hadron spec-
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trum in presence of the Drell-Yan trigger (x = VM %S, Yysp- = 0) is expressed by the
fragmentation functions of appropriate quark and diquark jets at rescaled momentum
xg/(1—=Xx), xp = ZpTi/\/E. In the pion fragmentation region no such similarity is expected
within the recombination model.

The outline of this paper is the following. In Chapter 2 the model is formulated for
quark fragmentation into mesons, taking quantum number effects and resonance decay
into account. For the convenience of the reader also known results are reviewed. In Chapter
3 the model is extended to diquark jets, including quark and diquark fragmentation into
baryons. Chapter 4 contains a comparison with data from e*e~ annihilation and lepto-
production in the target fragmentation region, as well as a general discussion.

2. Quark jet fragmentation

In this section we describe mainly results known also from previous work [3—38]
but in a way easily extendable to modifications of the couplings in the chain.

A chain decay model for anisotropic hadronic final states with scaling has been pro-
posed by Krzywicki and Petersson [12], Finkelstein and Peccei [13] some years ago. In this
model the final state is envisaged developing itself from a primary excited system by step-
wise emission of particles. The scaling distribution of the leading one is put into the model
by hand. But then the structure of the model relates all properties of the final state to each
other and may be tested unambiguously. We will illustrate the model in terms of the
resulting integral equation for the single particle distribution (x = 2p;/./s)

N B s) E d’%

x, ) 5) = ™3 s

R Tinel dsl’

Ny(x) = [ d*p Ny(x, Py, 9). 2.1)

No(x) denotes the distribution of the first emitted particle. The following integral equation
is established by the inclusive bootstrap assumption. For x > 0

0 1-x

d ( d
Ny(x) = No(x)+ j 2 No(IN () + J —yNo(y)Nl( a ) 22)
Il y 1-y

-1 o

The distribution Ny{x) is normalized
1

dx
J No(x) — =1, 2.3)
x|
-1
expressing the unit probability for “leading” particle emission. N,(x) and N;(x/(1—y))
is the invariant distribution of particles with rescaled momentum inside the remaining
hadronic system after backward and forward leading particle emission, respectively. This
simple form results from neglecting transverse momentum and mass of the produced
particles. This approximation allows one to factorize forward and backward production
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which applies also to many particle distributions. For brevity we assume Ny(x) symmetri-
cal, and define g(x) = 2Ny(x) with

1

Q
d d
flg<y)=f1g(y>=1.
nllyl . y

Then f{x) = N,(x) becomes symmetrical, too. For definiteness we consider x > 0 and
obtain

(1] 1—x
dy d
J0) = g0+ IT}I O+ f 2 g(y)f<ix—y>, (2.4)
sy ' 0 l -
or, by virtue of normalization of g(y),
1-x
d
fx) = gx)+ f g(y)%*(;f—). 2.5)
’ y -y

Thus we arrive at independent fragmentation of both a forward and backward jet. This is
maintained also when a unsymmetrical

_Jee(x) x>0,
No(x) = {g:(m) x <0,

and different probabilities
1
dy
7 grp(y) = opp,  optop =1
0

for forward and backward leading particle emission, respectively, are used.

Now we want to abstract from this scheme a way to parametrize quark or antiquark
jet fragmentation. An excited color singlet system with separated color (anti)triplet quark
and antiquark with invariant mass W should produce hadrons along a preferred “longi-
tudinal” direction by forming hadrons out of either the quark or antiquark jet in an
approximately independent way.

We consider both jets as a stream of momentum carried by the (anti)quark and gluons
with total color, flavor and momentum determined by the original (anti)quark. The firstly
produced hadron remembers its parent quark’s flavor as far as it has to have this quark
in its wave function. The bare quark carries only a certain fraction of the total jet momen-
tum. The momentum distribution of the first hadron is essentially determined by this
momentum sharing of the bare quark inside its accompanying jet. It must be chosen phenom-
enologically. We wish to emphasize that we feel not obliged to take it from dimensional
counting rules [19] or from comparison with hadron structure functions vI¥,(x).

We have mentioned the Krzywicki-Petersson-Finkelstein-Peccei model in order to
make clear that the notion of independent fragmentation of isolated quark smay be consid-
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ered as an approximation for the hadronization of an excited color singlet quark anti-
quark system. With this caution in mind we define the distribution of hadron h from quark
q, dN/dz|,;, = Dy,(z), and emphasize that we wish to use them in the hadron CMS
where we have two jets balancing each other in momentum. The scaling variable z is
Z = Phadron/Pjer = |Xr|. Usually these D-functions are compared with or extracted from
deep inelastic leptoproduction data in the laboratory frame where z is usually defined as
z = pyp/v,v = E,—E,. As far as the chain decay model has been used for predicting hadron
distributions [6] the low z region (z < 0.2) could not be described successfully.
In this Section we restrict ourselves to fragmentation into mesons.

2.1. Total meson distribution

First we write down the integral equation for the single particle distribution without
specification of flavors, D(z) = Y. Dy, o(z) which represents the total meson distribution and
h

turns out to be independent of the quark flavor. The momentum sharing function of each
single decay step is denoted by d(z). Both are related by the equation

- d(z")D ( ) , (2.6)
1—2z

r

dz
D(z) = d(z)+ j}
with nonnegative normalized d(z),
1
{d(z)ydz = 1. .7
o

For completeness, the equation for the two-particle distribution is

1 zZy %1
D(Zl, Zz) = d(zl) 1—z D(l— )+d( 2) oy 4 (1—22)

dy Zy Z3
+ d(y)D ( . 2.8)
.[(1~5’)2 1—y  1—y
For momentum sharing functions having the form
d(z) = B+1) (1 -2y 2.9)
the functions
D(z) = ﬁi -2y (2.10)
and
(B+1)
D(zy,z,) = . (1-z;—2z,) (2.11)
142

are easily found. The distribution of the nonleading meson (i.e. those not emitted in the
first step) is

DNY(z) = D(2) — d(z) = (B+1)(1—2)* !}z (2.12)
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Here plateau height, f4 1, the shapes of the leading and nonleading part of the spectrum
are related in just the same way as in the bremsstrahlung model [14].

In more general cases the Mellin transformation is used to solve the integral equations
(2.6) or (2.8). The transformed distributions

D(k) = | D(z)z*"'dz,

d(k) = | d(z)z*" 'dz, (2.13)
are related by the transformed equation
D(k) = d(k)+h(k)D(k), (2.14)
with
h(ky = [ d(z) (1—2)*"dz. (2.15)
From
- d(k)
D(k) = —= (2.16)
1—-nk)
we have to find D(z) by inversion of (2.13)
ctinw
1 dk
D(z) = — — D(k). (2.17)
2ni z

Besides the singularities of d(k), the singularities of D(k) are determined by the zeroes of
1—A(k) = 0. (2.18)

Due to normalization (2.7) there is a pole at & = 1. This is the right most singularity which
determines the behaviour of D(z) near z = 0

D(z) ~ 2 {[ dzd(z) [log (1 —2)i} . 2.19)
z=0

There is a plateau in rapidity y = log (z/z,) with height
H = {[ dzd(z) llog (1—-2)|} " (2.20)

and a logarithmic multiplicity

1

(n) = J.D(z)dz ~ Hlogf-. (2.21)
n

Here z, is @ minimum z, = u/P, P is the total jet momentum, and u is of the order of the
transverse mass m; of the produced particles.

We have used this simplified version of the model in order to fix our function d(z) by
comparison with charged hadron distributions in ete--annihilation [15] (see Section 4).
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2.2. Quantum number structure

Now we want to consider the quantum number structure of the chain decay. Obviously
it is sufficient to treat the quark jet fragmentation function Dy, as long as only meson
production is considered. Antiquark jet fragmentation is determined by charge conjuga-
tion, Dy,;; = Dy,q. We have the Mellin transformed equations

Dija(k) = diyq(k)+ ;Eh’/q(k)ﬁh/qﬂ'(k)' (2.22)

The sum runs over those mesons which may be emitted in the first step, i.e. b’ = gqq'.
Only for these the “primordial” functions d,,(2) do not vanish identically. A, (k) is defined
analogously to equation (2.15) in terms of d,,,(z). As long as we consider only quark jet
fragmentation into mesons, and according to our view of a quark jet discussed above,
we take a universal z distribution,

dio(z) = d(2)R%y,  q' = qh
Ry =0 for h#qq. (2.23)

All the couplings R, define a quark transition matrix

Ryy = X Roa (2.24)
which is normalized according to
% f dujo(z)dz = | d(z)dz g Rl = ;qu, =1, (2.25)
with
[d(z)dz = 1.

The ratios between the couplings qu, for h belonging to the same unitary multiplet are
given by the corresponding Clebsch-Gordan coefficients in case of complete symmetry.
We will consider only SU(3) and keep open the possibility of strange particle production
being suppressed by a factor k¥ <{ 1. The ratios between different multiplets (we will con-
sider directly producgd pseudoscalar and vector meson) will be specified by weights opg,
a,, aps+o, = 1. SU(6) symmetry suggests o, /ops = 3.

The solution of equaﬁon (2.22) is simply

Dyjok) = hi (A(ky'd(K)) Y (RM)gq Ry i (2.26)

The simplest model of this kind with SU(2) isospin symmetry has been considered in Refs
[3, 4]. In the general framework given here and with only 7*° produced we have symboli-

cally
7 2n*
ZhREq' = %(27:" o ) @.27)
b



888

The transition matrix R and its powers are

12 n 11 L 1 -1
R =%<2 1)’ R =%<1 1) +%("'% (__1 1)' (2'28)

For d(z) = 2(1—z) we find

1—z
Dysp(2) = Dysyol2) = %7 +2(1-2°3),

[,
]
N

Drop(z) = Dypoja(2) = %7 (2.29)

These quark jet fragmentation functions have been compared to neutrino production

data with reasonable success and used for the discussion of models for large transverse
momentum processes in Refs [4].

A more realistic model to be used when charm may be neglected is the following

SU(3) model. A symmetry breaking factor « is applied in all emissions which require the

creation of a ss pair. We allow for direct production both of pseudoscalar and vector

mesons. Symbolically we write
o
g hRE, =
W 2(24%)

h

7n°+ncos? O+n sin? 6 2z 2kK*
x {2n” °+ncos?B+4n'sin> @ 2xK°
2K~ 2K° 2i(n sin® 8+ cos? 8

o’+aw 20" 2kK™
o
Y |20 0 2K *° 2.30
Tagrm|t e (2.30)
K* 2K* 2w

(0 is the mixing angle, sin?0 = 0.511 in case of quadratic mass formulae). Then the quark
transition matrix is

11
1
=aslt ) (2.31)
1 1

which reproduces itself under multiplication, R* = R. The same form for R has been cho-
sen by Seiden [6] and Feynman [5]. We try to describe the data with d(z) = 2(1 —z) and
a,/aps = 3 as found to be appropriate by comparison to charged hadron distributions
in ete~ annihilation (see Section 4). Seiden [6] has used a flat momentum sharing function
d(z) = 1. The resulting distributions are too flat even modified by resonance decay [6].
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TABLE I
l _
" | il KEKKe njy
ch ops (2 +1)~2 apsk (2 +K)~2 otps (24+K)~2 (cos? 6 +x2 sin? 0)
aps (2+K)"* (k2 cos? 0 +sin* 6)

The selfreproducing property R? = R simplifies considerably the calculation of

distributions!. We obtain from (2.26)

N - h(k)d(k)

Dyjq(k) = d(K)R} 5+ TR Ry RY o5 (2.32)

pw

If h contains q there is a leading particle contribution d,,,(z) = d(z)R‘;,qg. The nonleading
part is independent of the original quark flavor q. Its shape is simply given by D™(z)
= D(z)—d(z), and its magnitude is determined by coefficients

C" =} RyRyqi = X, PoRy o (2.33)
q q
(P, are the probabilities for qq pair creation.) For our choice d(z) = 2(1 —z) we find the
nonleading contribution
2(1—2)*
Dpk(z) = C (1=2) . (2.34)

4

Thus we have the quark jet fragmentation functions for directly produced pseudoscalar
and vector mesons

2L~ z)>
e
z

Dy 4(2) = Rggn2(1—2)+ (2.35)

The coefficients Rg, o can be read off Eq. (2.30). For brevity, we have collected the ct
in Table 1. They determine the logarithmic growth of the multiplicity

1
P
(Mg = J 2Dy q(2) & 2C" log — —3C"+ R} G- (2.36)
u
The asymptotic multiplicity ratios for directly produced mesons are therefore simply (see
Eq. (2.30)

—-K*—~x e K* a
T on

T

For the particle distributions from vector meson decay we have used the known branching

! When choosing R we see no reason to follow Sukhatme {8], who argues for taking R symmetrical,
in this probabilistic model.
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ratios. The shape of the distributions are calculated analytically with simplified kinematics.
The neglect of kaon masses in K* decays is certainly the most serious drawback of this
procedure. For two particle decays we have used the parent-child relation

1

’

dz ,
Dindirec&(z) = “:,‘ Dresonance(z ) (237)

4

z

and three body decays were approximated by

1

’

dz z
Dindirecl(z) = J‘7 Drcsonanca(z,)2 (1 - ';,-) . (238)

We will not reproduce here the resulting distributions of indirectly produced pions and
kaons. The suppression factor x will be fixed by comparison with data for n* and K*
spectra from ete~ annihilation [16] (see Section 4).

2.3, Multiplicity distribution

« For directly produced particles and resonances there are only weak correlations in this
model, which may be seen by looking at the predicted multiplicity distribution. The Krzy-
wicki-Petersson-Finkelstein-Peccei model in the kinematic approximation adopted leaves
one hemisphere unaffected by leading particle emission into the other one. Within this
approximation used to define quark jet fragmentation functions we may also define a multi-
plicity distribution for either jet separately. Its generating function is denoted as y,({y}, P)
and, according to the recursive principle, fulfills the following integral equation

yo({&n}, P) = [ dxd(x) Y Eh:s‘hREq'wqr({fh}, P(1—x))

+low momentum input. (2.39)

The low momentum part represents the quasiexclusive component qq — MM and is
suppressed by meson formfactors. It is not necessary for our purpose to specify this further.
We have only to make sure that it contributes only low lying singularities to the Mellin
transform

Po({&n}s 1) = [ dPP™ Ty ({&h), P), (2.40)

determined by the equation
Po{&n} A) = [ dxd(x) (1-x)" Y %ﬁthEq@q'({éh}, 4)
q

+ transformed input. 2.41)

The asymptotic behaviour of the generating function is represented in the form

A({&n})
Wq({fh}9 P) oC ({;') H (2.42)
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where A({&,}) is the rightmost singularity to be found from the equation

det (8,4 — § dxd(x) (1-x)* ¥ &R5) = 0. (2.43)
We define o by i
o [ dxd(x) (1=x)* = 1, (2.44)
and seek for the largest eigenvalue of
det (20,4 — }h:éthq,) = 0. (2.45)

-~

For « = 1 corresponding to &, = | we have / = 0. From (2.42) we obtain the asymptotic
fm _l’

behaviour of the correlation coefficients
| ( P ) (2.46)
- ogl—1}. .
R W PR K

For a momentum sharing function d(z) = (B+1)(1 —z)’ we note that A is linear in a,
A = (B+1)(x—1). Then there are no correlation else in the asymptotic multiplicity distri-
bution than due to the quantum number structure of the chain

P
log (—) . (2.47)
=1 ‘u

Obviously superpositions of different functions d(z) of the kind mentioned above produce
dynamical correlations, i.e. 2 is no longer linear in z. This applies for instance to Feyn-
man’s choice [5]. But also in this case the correlations are weak in the sense that all
S o log (P/p), i.e. are proportional to the multiplicities.

~n
f(ﬂ) ,,,,,, oo

(1

|1 62, .. 0C,

2.4. Two-particle distributions

At first we want to consider the two-particle distributions for directly produced parti-
cles and resonances. Dy ;,,(2;, 2;) fulfills the integral equation

{ z
Dh,h;'q(zl’ o) = dh,.'q(Zl} 1‘:—: Dh;/q}’n (f‘) +(1e2)
It

Zy

( d'\’ 21 %2 )
+ , D ———1, 248
ZJ(! e dal?) ““‘"““<1 y 1=y (2.48)
h

which is solved by Mellin transformation with respect to z; and z,
Dh,hz/q(kh ky) = f Dy 1215 zz)zk' ! kz 'dz 1dz,. (2.49)

The resulting algebraic equation is solved by the following expression (we suppress here
quark indices, matrix multiplication is understood)

5b,bz(k1, ky) = {1+ Z (ky+k,—1)'R"} ;Rhlh(ku 2)th(k2)

+R"R(kg, k;)Dy,(ky)}- (2.50)
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h(k) has been defined in (2.15), and
A(ky, ky) = [ dzd(z)z" " '(1—z) . (2.51)
The Mellin transformed two particle distribution has a leading particle contribution
D ks ko) = REg Ak, ko) Dy, i, (ko) +(1 > 2) (2.52)

if either h, or h, are directly coupled to the quark ¢. Using the results (2.35) for the single
particle distributions we find

1
_ ph
Dh(hz/q(zl’ ZZ) q qthq;I thhz ( ) _—71 d (

- >+(1<—->2)

1 z
RM thchzd(zl) DNL( 2 ) +(1e2). (2.53)
-z, 1—z,
For the remaining nonleading contribution we take advantage of the selfreproducing
property R? = R. Thus we obtain

hi(ky+ky—1)
1—h(k;+k,—1)

DY ks, ko) = Ryq, Dk yja(kss ko) (2.54)

q1

independent of q. We define, in addition to C" (equation (2.33)), the coefficients
Chh = 2 PRY. i R™ (2.55)

qhy,qhih2
and notice that for d(z) = (8+1)(1—z)” the original of the Mellin transform

ﬁ(kl + kz—‘ 1)

— 2 DYk, k
1—h(ky+k,—1) (ks k)

is given by the expression

1—(z1+22)
dz Z4 Z,
+1 D" , .
(B+1) f (1-z) (1—2 1—2)
0

Thus we obtain the two-particle distribution (for directly produced particles)

Dhlhz/q(zl’ z,) = Dll;xhz/q(zla 22)+Dlljxlilz/q(zl7 Z3), (2.56)

( ) hxhz( 1) / Zy 1 ] Z2
Zy, 2 C ﬁ t .
h1h2/q 1 2 (1 2 1___2 1_Z_..Zl 1 z Zl

by ha dz Z4 1 NL Z, -
+CC (ﬁ+1)f(1—z)2d<1—z>l—z—le (1—z—zl>+(1 2). (2.57)

For a study of two-particle distributions within a jet one has to consider explicitly resonance
contributions. We plan to do an analysis of correlations elsewhere.

with
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3. Baryon production and diquark jets

Now we want to extend the scheme developed for meson production from quark
like jets to baryon production. Once a baryon has been emitted one has to deal with the
fragmentation of a jet with antidiquark quantum numbers. In this way quark and
diquark jet fragmentation functions become coupled. In view of poor data on baryon
spectra in leptoproduction and also in ete~ annihilation we are going to present here
only equations and results concerning total meson (M, = M;, M, = Mj;) and baryon
distributions (B, = B;, B, = B;, By = Bs, and By = By) from quarks q, antiquarks q, di-
quarks d and antidiquarks d, respectively. These total distributions are then flavor inde-
pendent. A more detailed description is straightforward. Our Mellin transformed chain
decay equations are

4

q = P1‘71 +P151Mq+(1 _171)}:21‘?&

=]
=3
i

(1 -pl)‘?z+P1E1Bq+(1—171)52§&s

=l
il

q P1’;1Eq+(1“l’1)52§3,

ME = p2(74+pzﬁ4M_d‘+(1—pZ)ﬁ3Mq’

o]
2l
!

= le;‘;l}c‘: +(1~ pZ)HSBcp

= (1= p)ds+pyhaBs+(1—p)i;B,. 3.1)

Ol
al
|

The momentum distributions d,(z) for firstly emitted mesons from quarks (d,(z)) and anti-
diquarks (d4(2)), baryons from quarks (d»(z)) and antibaryons from antidiquarks (ds(2))
are normalized: [d(z)dz = 1. In a single decay step, p, is the probability for meson
emission from a quark jet, and 1—p, for baryon emission. From baryon multiplicities
in ete~ annihilation [16] and in the current fragmentation region of lepton proton interac-
tions [17] p, is expected to be slightly less than unity. p, is the probability for meson emission
from a (anti)diquark jet, and (1—p,) for (anti)baryon production. From quark combinato-
rics [18] they are expected to be comparable in magnitude, p, ~ 1. Lacking better argu-
ments we have chosen this value and tried to understand the data. The resulting distribu-
tions depend critically on this parameter in shape. The transformed functions /,(k) are
related to dy(z) in the usual way (Eq. (2.15)). The solutions of the system of equations
(3.1) are the following Mellin transformed expressions

o= Mz = A" {(L=p,hy)p,d, +(1 = pDh,p,ds},

=By = 47" (1-poh) (1-p))d,,

= By = 47 '(1—p )k, (1—py)ds,

My = Mz = 47 {(1=p,h)poda+(L—p)hypid,),

By = By = 47'(1—p,h,) (1—p,)ds,

By = By = 471 = p,)i,(1 — p)d,, (3.2)

?

Il

Wl B
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where

a4 = (1'—plﬁl) (1_Pzﬁ4)“(1—P1)ﬁz(1_P2)f13' (3.3)

We have specified further the shape of the momentum sharing functions di(z). d,(z)
= 2(1 —z) was found to be suitable for ete~ — mesons, as will be discussed in Section 4. In
view of the shape of the antiproton spectra known from e*e~ annihilation [16] we took
dy(z) = 3(1 —z)* similar to the pion spectra (determined essentially by vector meson
decay, see Section 4). Since a diquark is a 3 of colour we expect its momentum sharing
within a diquark like jet to be the same as that of a quark in a quark like jet. For the recom-
bination into a baryon we took also d;(z) = d,(2),= 2(1 —z). Finally we chose for d,(z)
describing the meson emission from a diquark jet d.(z) = 3(1 —z)? since recombination
into meson requires the diquark to split. As a mnemonic for our choice we note a quark
counting rule

d(z) = (mi+1) (1 -2)%, (34

where »; is the number of remaining elementary constituents, instead of the dimensional
counting rule [19]. There are only two free parameters p, and p, left. We wish to draw
attention to the fact that the ratio of the plateau heights for mesons and baryons is deter-
mined only by these probabilities, irrespective of the specific form of the momentum
sharing functions. Since Ak = 1) = di(k = 1) = 1, from Eq. (3.2) follows immediately

zBy(z), zBy(z) —=5> Ha,

ZMq(Z)s ZMd(Z) _>HM5 (35)

z—=0

and

Hy _ (=p)(-p) _ 1 |
Hy  pi(1—p)+(—pdp.  pi/(1=p)+p2/(1—p3)’

(3.6)

this ratio is mainly determined by p,, p; > p,. We have used this ratio to fix p,.

We do not intend to reproduce here the analytic expressions of all the fragmentation
functions. For the final calculation of the meson spectra we have used the ratio of directly
produced pseudoscalars to vector mesons determined from e*e~ data (see the following
Section 4) and treated the decay of vector mesons according to the approximate method
(Eq. (2.37)).

We have assumed that the baryon distributions are not essentially altered due to
eventual resonance decay. Baryon resonance decay has to be taken into account more
carefully in confrontation with better data.

4. Comparison with data and discussion

In order to test and to extend the applicability of the chain decay model we proceed
in several steps. At first we use the momentum spectra of charged badrons in e*e~ annihila-
tion below charm threshold at s = 13 GeV? measured by the PLUTO collaboration [15]
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(Fig. 1) to fix the momentum sharing function for g-jet = meson. We chose the form
d(z) = 2(1—z). When all mesons are assumed to be produced directly from the chain
decay, the model gives a too flat distribution (dashed line). In the normalization the experi-
mentally observed neutral energy excess [20] is used to determine here the fraction of

10 "
2 s=13Gev?
=13 GeVY v

s ete —mht X j
L -

3 )
b <

N~ a 10 —
% £

iy
2 b 33 )
Q
Sk afe ]
vy

o o1 —

ol i

[770] =

1 1 | L.
a2 04 06 de 2€
LAV
Fig. 1 Fig. 2

Fig. 1. Charged hadron spectra in ete~ annihilation at s = 13 GeV2? from PLUTO [15] compared with
the quark fragmentation model. Dashed line: all pseudoscalar mesons are directly produced, full line:

directly produced pseudoscalars 1

directly produced vector mesons 3

Fig. 2. Charged pion and kaon spectra in e*e~ annihilation at s = 13 GeV? from DASP [16) compared
with the quark fragmentation model with SU(3) symmetry. Full line: 2%, dashed line: K*

charged mesons in the total meson distribution. Inducing pseudoscalar meson production
partially through vector meson decay we find a very good agreement with data (full line).
We have varied the ratio apg/ar, (tensor mesons are neglected) and have found a ratio
ops/o, = 1/3 to be a optimal choice.

Including quantum numbers we compare this fragmentation model with pion and
kaon distributions measured versus x; = 2E/,/s by the DASP collaboration in ete~ - h*X
also at s = 13 GeV? [16] (Fig. 2). The relative abundance of pions and kaons is reproduced
under the assumption that no suppression of ss pairs is present (x = 1). The observed
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difference in the spectra is described only by the different contributions from resonance
decay.

In e*e” annihilation antibaryon spectra are also measured [16]. Therefore we take
the model extended to include baryon and antibaryon production from quark and anti-
quark like jets. As argued in the preceding Section we have chosen the required momentum
sharing functions dy(z) in the specific form

di(z) = (m+1) (1 -2)™ 4.1)

where #; are the numbers of remaining elementary constituents, 1 for a remaining (anti)-
quark like jet, 2 for a (anti)diquark like jet. We have taken p, = 4 and fixed p, by Eq. (3.6):
py = 3. In Fig. 3 we compare the antiproton spectrum vs. x; in ete~ annijhilation at
s = 13 GeV? [16] under the assumption that 50 9 of the antibaryons are antiprotons. With
this assumption the normalization is fixed.

10 5
o s=130eV E
ete »nX
N ot ° 2p -, : §
>
O L -~
o
Q
2
Bix oot —
U)‘ Q » 7
A 1 1 L
02 04 06 08

¥ - 2E
=

Fig. 3. Twice the antiproton spectrum in ete~ annihilation at s = 13 GeV? from DASP [16] compared with
the quark fragmentation' model with mesons and (anti)baryons

After the extension to baryon production also jets with (anti)diquark quantum numbers
appear in the model. It is interesting to test the model predictions for their fragmentation
more in detail by confronting them with data from deep inelastic lepton proton scattering.
In the quark-parton model there is a space like vector boson sent from the lepton vertex
and absorbed by a valence quark at sufficiently large xg; (xg; > 0.2). Then there evolve
two jets with quark and diquark quantum numbers, respectively, forming an excited color
singlet baryonic system with mass W. Particle distributions in the vector boson-nucleon
CMS should then scale in xg defined here as xp = 2pj,/W (and not xp = p’l'l‘h/p}',}).
We expect asymptotically

N
[xF| dx:l = [xpIMya(lxel), x¢ 20,
NB ,
IxFI = ]xFqu/d(foD’ Xg 2 Oa (4‘2)

dxg
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and compare this with data. In Fig. 4 we show a preliminary A distribution versus
Xg = p’ﬁh!ptﬂnm measured in ep collisions by the DECO collaboration [21]. The normaliza-
tion was not reported. Thus this figure is only a comparison of the shape of the baryon
spectrum from our model with data for baryon production otherwise not available. We
find agreement in the general shape. The equal plateau height in the asymptotic model
result guarantees a smooth connection between the target and current hemispheres. Of
course, the detailled shape near xy = 0 is modified by kinematics as the emitting system
becomes less massive, and the factorization assumption breaks then down for heavy
particle emission.

Meson and baryon production (full and dashed lines) in the target fragmentation
region as described by the model are compared with data from vp charged current interac-
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i i ]
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Fig. 4. Feynman xy = Zpﬁ;,f W distribution of electroproduced A from the Cornell-DESY collaboration
[21] compared with the typical baryon spectrum from quark and diquark jet fragmentation

tions reported from the Fermilab 15 foot hydrogen bubble chamber [22] in Fig. 5. In this
experiment hadronic systems in the range 1 < W2 < 50 GeV? have been investigated,
and a charged hadron multiplicity {nc,> ~ 1.22 log W?2 almost independent of g2 has
been found. For this comparison we have assumed: 759 of directly produced mesons
to be vector mesons (as suggested by ete~ data), 50% of produced baryons are protons,
and the n/K ratio vs. xy analysed before has been applied to find charged pion spectra
among the total meson distribution. Experimentally protons with larger p,,, > 1 GeV/c
are not identified. Therefore the model prediction should not be compared in shape with
the identified proton distribution. We have included this in Fig. 5 because of the relative
good agreement in normalization.

From our point of view xp = 2p";;h/ W as used by experimentalists is the natural
variable for the distributions to scale in. (Starred quantities refer to the hadronic CMS.)
If we take the variable Xp = pjl,/pX as used from hadron-hadron interactions we should
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expect, say, in the target fragmentation region

2 W xrl Md( ! ) (4.3)

dxF l“xBj 1—x8j

Pokorski and Van Hove [10] have considered hadron fragmentation and leading particle
effect in a particular quark recombination model. Specific for their approach is the notion

7p—-/u+hX
- Q x- —~
Né‘ i ,
ox ﬁ
B 0O identitied protons ]
2 ’
L]
W
B
)
~
W
&
W

1 i 1
-06 -4 02 6o,
£

Fig. 5. Feynman xp distribution of # and identified protons in the target fragmentation region in YuD
interactions [22] compared with the pion (full line) and proton spectrum (dashed line) calculated for
a diquark jet

of a joint valence quark distribution g(x,, x,, x,) in the baryon. If in deep inelastic scattering
the valence quark q; is hit by the probing current (x; = Q?%/2m,v), the xg distribution of
the baryon fragment is obtained via recombination with a wee (xp; & 0) quark

dN  f(Xp, x3)

= , (4.4)
F § f(x', x3)dx’
where
x
S(x, x3) = _f g(x—x3, X3, X3)dx, 4.5)

is the unnormalized x = X distribution of the two valence quarks q, and q,. According
to their model one expects scaling in xg, whereas the distribution in X = Xg/(1 —x3) (= Xg)
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should and does not [10] scale at all. x is the scaled baryon momentum relative to the
through-going diquark jet momentum, which is our scaling variable found to be the relevant
one also in experiment.

We propose to test the adequacy of the notion of jets with diquark and quark quantum
numbers in general and their description by the chain model also in hadronic reactions.
Triggering on Drell-Yan produced lepton pairs (of relatively high mass, say M?/s = x?
=~ 0.05 ... 0.1) at rapidity y,.,- = 0, in meson induced reactions one should be able to
study whether forward and backward production may be understood as quark and diquark
jet fragmentation. If this concept is reliable meson and baryon distributions in the forward
respective backward hemisphere will follow the rescaled distributions (D is either M

or B)

L AN 13 | %! ~ _2p)

—— = e D -1, =—20. .
e Vi) R = 6

We summarize our discussion:

1. We have demonstrated that the chain decay model can be successfully used for
purely mesonic distributions from (anti)quark like jets with an appropriate amount of
vector meson production. This view is shared by others but we give a very convenient
formalism and parametrization.

2. This model can be extended to (anti)baryon production and (anti)diquark jets
with reasonable assumptions concerning relative probabilities and momentum sharing
functions thus providing a suitable parametrization, at least.

3. Model independent but inherent for the concept of quark and diquark jets and
supported by deep inelastic experiments is scaling in xg defined relative to the decaying
hadronic system irrespective of the way it is produced.

4. Assigning the notion of diquark like jets an equally universal phenomenological
relevance as granted to quark like jets (which we, following Brodsky [19], are inclined to
do) one is able to make predictions for certain hadron induced processes, too. The scaling
law (4.6) is then an inevitable consequence.

5. We found it necessary to abandon the dimensional counting rules [19] and summa-
rize our attempts to account for deep inelastic data in the counting rule (4.1) for the leading
component of particle spectra.
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