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The effective interaction energies were deduced from the experimental data for single
neighbouring nuclei with N = 28 and N = 50. Odd-even effect, which was found, manifests
itself by the dependence of the effective two-particle interaction energy on the number of
particles which are filling the same orbit. The results were compared with the predictions
obtained for d-function interaction with a varied value of spin exchange term, Comparison
with the experiment is given.

1. Introduction

It is well known [1, 2] that nuclei with N = 28 and N = 50 are well described by the
nuclear shell-model in which the 43Ca and ®3Sr can be treated as cores. Using the phenom-
enological approach, in which the number of matrix-elements can be reduced by con-
sidering only the lowest dominant configurations, one can investigate the two-body
interactions defined by V, = {j,j,J|V|jij.J). These interactions are treated then as
parameters fo fit the experimental data. Any many-body matrix-element can be expressed
as the linear combination of V, [3]. For any state described by a pure configuration and
energy E; one gets an equation of the type

S a,V; = f(E;, DNBE, E°), €))

where a; are coefficients, DNBE denotes difference of the nuclear binding energy [4]
and E€ denotes the Coulomb energy of the valence particles. If energy states are described
by the mixed configurations, the equation (1) should be modified a little. For a large
number of states belonging to several nuclei, one can obtain effective interactions which
should reproduce positions of all the model-levels within the region in question. Results
obtained from the single neighbouring nuclei [4] show the odd-even effect in the f7,,
region. A similar effect was observed in the previous work [5], where ¥V, and V, were
different for °Zr and °'Nb. The aim of this work is to show the odd-even effect in the
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P12 892 Tegion (°°Zr [6], °*Nb [7], °2Mo [8]). Results of the calculations presented here
are more exact and more complete than in [5]. The odd-even effect is discussed. The
J-function interaction with a small spin-exchange term can be taken as a zero-order
approximation of the two-particle interaction. Values predicted by this interaction are
compared with our results in Section 3. Comparison with the experiment is given in
Section 4.

2. Derivation of the effective two-body interactions

Notation, sign convention and method of obtaining the effective two-body inter-
actions from experimental data for the simple case of f;,, orbit only, were presented in
work [4]. In that case the set of equations of type (1) allows one to calculate directly the
two-body interactions. When two or more orbits are included into considerations, the method
is the following. Experimental energies corrected for DNBE’s and single-particle energies
(or E€ also) should be equal to the eigen values of many-body interaction matrix. The
method of calculation requires that the energy of any model-state should be expressed
as a combination of the parameters V; (¥, denotes the necessary two-body matrix-element;
the number of the parameters ¥, depends on the configuration space). If the configuration
space is restricted to the 2p,,, and 1gy,, orbits, one needs 9 two-body parameters and
2 single particle energies. These parameters for proton-proton interaction are

<gg/2J|V|gg/2J> = VJ with J = 0’ 2’ 4, 6) 89
<Pf/2J = OIVIP%/ZJ = 0} = Vg, <P%/2J = 0|V[g3/21 = 0>; = Vpp
<P1/2g9/2J = 4]V|p1/2g9/2J = 4% = Vyp,

<P1/2g9/2J = 5[V|p1,2g9/2J =5) = Vsy. 2)

The single proton energies &, and &, treated as constants, were calculated from the energies
of 1/2- and 9/2* states of ¥°Y [9] yielding the values

&y = —(6149+14) keV, &, = —(7063+13)keV. 3)

4
The method requires these two values to be constant because fits were made separately
for different N = 50 isotones. Keeping in mind the last remark, we express any many-body
matrix-element for mixed configurations as a sum of two matrices

PV = H%‘I'ij = Hy;, 4
where
9
Hij = 12'1 %iVi, ©)

and D,; depends on single particle energies. Starting from the equation for the eigen
value problem we can write down

HX = EX, 6)

N
'21 Hy;Ap = ExAy, Q)
5
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where the matrix A4 is built up from the eigen vectors as columns and N denotes the order
of the interaction matrix (for specific spin value). After substituting Eq. (4) to Eq. (7) one
gets

9
E, = 12:1 thVz’*‘ny ®
where
N
Cu= '21 “zijjk/Akks )]
i=
and
N
CP = Y DyAlAu- (10)
i=1

In our case the matrix D,; contains only zeros with the exception of the element
Dyy = —26 = 2(¢,—¢&,) which corresponds to the configuration 032 g;,‘22. In Eq. (8)
E, should be corrected for DNBE and single particle energies (or EF€ also).

As an example for 9/2+ ground state in °'Nb we have

E, = (E;; = 0)-C,;,, (11)

where C;, = DNBE(ND, Sr)43&, = (2128 1+28) keV. The energy of any odd-parity state
n °!Nb arising from the p,,, g3;,' configuration can be expressed as [10]

E; = DNBE“*‘éap‘*‘(”—1)¢§g+<P1/2g;/_211%V|P1/2gg/_211>- (12)
Finally, we have a set of equations of the type
= f(V;, DNBE, &,, é”g, A) (13)

which can be solved by the method proposed by Glaudemans et al. [11]. This method
requires the knowledge of the initial values of the parameters V}; which can be taken e.g.
from Ref. [12]. The initial values of V; serve to construct the interaction matrix. After
diagonalizing procedure one gets sets of eigen vectors (necessary to construct an equation
of the type (13)) and eigen values, which can be compared with the experimental energies.
If the required agreement is not achieved, these values are treated as starting parameters
for the next step of iteration. Two computer programs NIOB and MOLB were written
to solve this problem for 'Nb and *2Mo.

The fitting procedure described above gives a set of parameters, the final values of
which depend on the set of levels taken into account. It should be mentioned at this point
that if we take into consideration different levels of some nucleus, the final parameters
do not change their values significantly [4]. The fluctuations are much smaller than those
observed in the case when the parameters were obtained from levels belonging to different
nuclei. For more complicated level scheme, it was not obvious which level should be
included into analysis. In the first step all model-levels were taken into account. For such
a set we obtained a RMS deviation per level, which was often large. RMS we define as

2
RMS _\/(bcal exp) , (14)
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where 7 denotes the number of levels and k the number of parameters. In the next step
we skipped some levels. The smaller RMS value obtained in this step attests that the missed
level has more complicated structure or its interpretation was wrong.

3. Results of calculation and discussion

The final values of the obtained parameters are presented in Tables I and II. The
mean interaction energies defined by
V@)= Y @I+, ¥ J+1)

J even J even

(15)

are also given in Tables I and II. A graphical representation of the parameters is shown
in Fig. 1.

TABLE 1
Effective two-proton interaction energies for f7/, orbit (in keV). Only statistical errors are indicated. V() is

defined as a mean interaction energy for states with 7 = 1. E(é, @) are predictions for d-forces with spin-
-exchange term. For comparison between the E(5, %) and others see text

5o sty $2Cr 53Mn S4Fe E@, @)
Vo —2934+26 —2493+49 —2618+34 —2288+72 —2484 465 —2335
Vs —13794+27 —1085+20 -1209+31 —965+29 —1075+£57 — 556
Ve -257+28 —53+20 —~34432 —53+28 55+ 49 =273
Vs 268+ 28 313+ 16 482430 428 +22 467+ 38 —136
702} ~309 —155 —97 —-72 —46 —336
TABLE II
Effective two-proton interaction energies for p,j: gs/: configuration space (in keV). See comment to
Table 1
90Zr INb 2Mo E@, @) SIG [13]
1
Vo —21004150 —~ 1772430 —~ 1865+ 37 —-1772 - 1705
| £ —-939+ 24 —-661+13 -~ 688+ 24 —-430 —616
Vi —48+ 24 53+15 48+ 23 —223 155
Ve 323+ 24 300+ 15 400+ 26 —132 437
Vs 464+ 24 479+ 9 538+ 30 - 71 570
‘17(2)—327 -219 —162 - 116 —197 —61
Vop —~561+150 —495+46 —802+128 —544
Vg 868+ 50 827469 832+ 100 853
Vim 528+ 23 525+10 887+ 96 716
Vsm 108+ 23 173+10 68+ 36 194
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Fig. 1. Effective two-body interaction energies for f7/, and gy, orbits. Only statistical errors are denoted.
The shift of parameters for gs;, is explained in text. Data for neutron-proton interactions obtained for
the f7,2 orbit (PT(**Sc)) from 48Sc using Pandya transformation, and for gy, orbit (SLG) taken from

literature (Ref, [13}) are included
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Results show the odd-even effect which is prominent, especially for ¥, and V,.
When the Coulomb energy is not taken into account the parameters are shifted towards
positive values (less attractive interactions). To obtain nuclear effective parameters which
can be compared with the J-force interactions we should subtract a constant C, from the
values presented in Table II. The constant C, is defined as follows

C, = (& MIVIg*(m)y;—g(mgMIV Ig(m)g(v)>,, (16)
with J =0, 2, 4, 6 and 8, where = and v denote proton and neutron, respectively. It has
been shown by Gross and Frenkel that C, equals 327 keV [12]. Figure 1 also contains
values of neutron-proton interactions. These values were obtained for the f;,, orbit from
48Sc using the Pandya transformation and those for go,, orbit were taken from Ref. [13].

For Vs and Vg i.e. for the case when the interaction is repulsive, it seems that the
effect changes the sign. One can say that the odd-even effect manifests itself in such a way
that the interaction energy of the two particles depends on the number of particles which
additionally are filling up the same orbit. It does not mean that real interactions should
have the same behaviour. The effect accounts for the assumptions made in the calculations.
We do not consider the origin of this effect here, but only comment on it in relation to
the works published earlier. It was noticed [14] that values of 1f;,, matrix-elements depend
on dimensions of configuration space. This effect is presented in Table III. “The bigger

TABLE III
Matrix elements <f7,|V|f},>; with 1f5;; and 2ps, orbits from Ref. [14]
f2)2 and some ps» All f72-p3)2
J Pure f7/2 shell [14] nucleons [15] configuration [16]
0 ! ~3110 — 2800 I ~2110
2 | —1520 —1290 : —1110
4 —~360 —170 \ —100
6 80 340 230

the shell model space the smaller the matrix elements (in absolute value) attributed to
1f3,, states”. This comment together with the odd-even effect allows one to conclude
that an enlargement of configuration space is more important for even nuclei like °Ti,
52Cr and **Fe than for odd nuclei like *!V and *3Mn. The differences between our param-
eters and the parameters obtained for the whole f7,,—p;,, configuration space are smaller
for odd isotones than for even ones.

A second comment concerns the work of Eisenstein and Kirson [17]. It has been
shown that energy levels in f5,, region can be well reproduced by using a three-body inter-
action in addition to the two-body one. These calculations as well as ours were performed
within the pure f7,, configuration space. Maybe, the odd-even effect reflects some contribu-
tions of the three-body interaction, if it was necessary to take them into account. It is well
known that §-force interaction can be taken as a zero order approximation of the two-
-body interaction. Such an interaction with a small spin-exchange term has the form

Vi, = Ko(r —75) [(1—0)+aP(oy " 7,)], a7
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where coefficient a is equal to about 0.2. The matrix element which corresponds to such
interaction can be calculated from the relations [18]

0 . . . PSR PR A S P P AN
Vm—m(zfﬁl)(zml){f(lw)(% A )+( : )} (18)

-z 0 z z 1
1—2 . . J 2
b= %5.(_1 ?)(2;,+1)(2j2+1) {—}(1—8) (i‘ _Jj 0) } (19)
’ 2 2

where S = (—1)*"7 and Q are connected with the radial wave function. The mean inter-
action energy E(2) defined by

EQ2) =Y QI+1)V,[y (2T +1) (20)
J J
0ot 2 3 4 5 6 7
S
[ 8]
= R
= :
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Fig. 2. Comparison of the observed and calculated two-body interaction energies as a function of the 8;,
angle between the two orbits of identical nucleons. The d-force with a small spin-exchange term was chosen
as a zero-order approximation of the two-body interactions
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satisfies the relation
EQ) = 0(1-«/2). @21

Normalization of d-forces was chosen in such a way that relation (21) was fulfilled for
two-body interactions obtained from “3Sc emploing the Pandya transformation. Comparison
between the obtained parameters and predictions for the d-force interactions are shown
in Fig. 2.
The two-body interaction energies are plotted as a function of the angle 6,, where
6y, = arccos (M —1) (22)
2i(j+D)

is the angle between the two orbits of identical nucleons [19]. The smooth curves corre-
spond to the different contributions of the spin-exchange term. A proper separation of the
V, and V, values can be obtained with a ~ 0.2. This comparison shows that it is necessary
to include some additional interaction to the d-force. This interaction should be repulsive
at the angles less than 120° and attractive for the angles close to 150°.

One can observe an interesting behaviour of the differences between V; for different
nuclei, e.g. Vy(Fe)— Vo(Ti) < Vg(Fe)— V(Ti). A similar behaviour is observed with the
values predicted for the J-forces with different contributions of the spin-exchange term.

4. Comparison with the experiment

The number of levels predicted for f;,, region within the pure f3,, configuration
is small. Therefore it is difficult to compare the experimental positions of levels with those
calculated with the help of parameters derived from the same nuclei. A general conclusion
is that the positions of 3/2- states do not agree with the experiment. Admixture of 2p;,,
configuration is important for these states. On the other hand, it is interesting to calculate
the positions of levels for these nuclei which have a few active nucleons outside the closed
core. As an illustration of this effect, Fig. 3 shows the experimental energies of 4°V [20]
compared with the strong coupling model calculations, A, [21] and with the energies
obtained using parameters derived from the present method, B. Quality of both calculated
sets is similar.

In the Zr region of nuclei, energy levels of °*Nb and °?Mo were also calculated.
Results are presented in Figs 4 and 5. The sets of energies denoted by A were calculated
with the help of effective two-body parameters obtained by a fitting procedure for the whole
8,2 region [13]. For these nuclei, the model predicts a lot of levels. The agreement between
the experimental [7, 8] and calculated level positions obtained in these examples enables
us to conclude that parameters derived from well known levels of some nucleus can be
able to reproduce energies of other model levels not yet observed in this nucleus.
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