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We show that if the electromagnetic form-factor decreases fast enough, then the spectral
function has at least one zero.

The asymptotic behaviour of the various electromagnetic form-factors of hadrons
is of great interest. The nucleon electric and magnetic form-factors have been measured
over the interval, 0 <X — ¢ < 25 (GeV/c)?. Fits to this data indicate a ¢~2 behaviour for
large values of four-momentum transfer [1]. The corresponding fits to the electric form
factor of the pion suggest an asymptotic z~! decrease [2].

Various theoretical models have been proposed to determine the electromagnetic
structure of both the pion and the nucleon [3-6]. However, depending upon what initial
assumptions are made, almost any type of decreasing power-law behaviour may be ob-
tained. In principle, if the form-factor, F(t), satisfies a non-subtracted dispersion relation,
i. e., [6],
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then knowledge of the spectral function, o(x), will allow a determination of the exact
asymptotic behaviour of F(z).
In this paper, we investigate a limited aspect of this general problem. We show,
within the context of a dispersion relation representation for the form-factor, F(¢), that
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if F(t) decreases sufficiently fast, then the spectral function o(x) has at least one zerb*
Our major assumption is that F(¢) satisfies a dispersion relation with no subtractions,
We now prove the following theorem: if
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then, the spectral function o(x) has at least one zero.

Note that if g(x) > 0, then from equation (1) it is easy to show that F(¢) is a Herglotz
function [8, 9]. If F(¢) is a Herglotz function, then it has the following lower bounds
on its asymptotic behaviour, [8],
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where C, and C, are constants, and « > 0. The theorem stated above is the contrapositive
{71 of this result, consequently, the theorem is true.

At present, we are investigating the question of whether there is any possible connec-
tion between the number of zeros of o(x) and the exact asymptotic behaviour of F(z).
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! We do not include a possible zero of p(x) at x = to.



